论文标题

可鲁棒性的定量口味

A Quantitative Flavour of Robust Reachability

论文作者

Bardin, Sébastien, Girol, Guillaume

论文摘要

许多软件分析技术试图确定错误是否可以到达,但是出于安全目的,这只是故事的一部分,因为它没有指示攻击者是否很容易触发发现的错误。最近引入的可及性能的概念旨在通过区分攻击者控制的输入与那些没有的输入来填补这一空白。但是,这个定性的概念在实践中可能太强了,留下了大多数但不完全复制的错误。我们在这里旨在提出一个可鲁棒的可及性的定量版本,更灵活,并且仍然可以自动化。我们提出了定量鲁棒性,这是一种表达攻击者如何轻易触发错误的公制,同时考虑到他只能影响程序输入的一部分,以及专用的定量符号执行技术(QRSE)。有趣的是,QRSE依赖于迄今为止在正式验证中看不见的模型计数(即功能性E-MAJSAT)的变体,但在AI领域(例如贝叶斯网络),知识表示和概率计划中进行了研究。然而,这些领域的现有解决方法对于形式验证目的而言并不令人满意,导致我们提出了一种新型的参数方法。这些结果已经在两个相关的安全案例研究中实施和评估,从而证明了我们的思想的可行性和相关性。

Many software analysis techniques attempt to determine whether bugs are reachable, but for security purpose this is only part of the story as it does not indicate whether the bugs found could be easily triggered by an attacker. The recently introduced notion of robust reachability aims at filling this gap by distinguishing the input controlled by the attacker from those that are not. Yet, this qualitative notion may be too strong in practice, leaving apart bugs which are mostly but not fully replicable. We aim here at proposing a quantitative version of robust reachability, more flexible and still amenable to automation. We propose quantitative robustness, a metric expressing how easily an attacker can trigger a bug while taking into account that he can only influence part of the program input, together with a dedicated quantitative symbolic execution technique (QRSE). Interestingly, QRSE relies on a variant of model counting (namely, functional E-MAJSAT) unseen so far in formal verification, but which has been studied in AI domains such as Bayesian network, knowledge representation and probabilistic planning. Yet, the existing solving methods from these fields turn out to be unsatisfactory for formal verification purpose, leading us to propose a novel parametric method. These results have been implemented and evaluated over two security-relevant case studies, allowing to demonstrate the feasibility and relevance of our ideas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源