论文标题
使用冷冻EM颗粒重新享用合奏
Ensemble reweighting using Cryo-EM particles
论文作者
论文摘要
冷冻电子显微镜(Cryo-EM)最近已成为获得生物大分子高分辨率结构的主要方法。但是,它仅限于具有低构象异质性的生物分子样品,在许多投影角度可以很好地采样。尽管Cryo-EM在技术上提供了用于异质分子的单分子数据,但大多数现有的重建工具无法提取可能的分子构型的完整分布。为了克服这些局限性,我们以先前的贝叶斯方法为基础,并开发了一个集合精炼框架,该框架通过重新授予先前的构象合奏,例如,从分子动力学仿真或结构预测工具中重新加权,从一组冷冻EM颗粒估算整体密度。我们的工作是一种从单分子数据中直接在构象空间中恢复生物分子的平衡概率密度的一般方法。为了验证框架,我们研究了一个简单的玩具模型的状态种群和自由能的提取,以及从探索多个折叠和展开构象的模拟蛋白质的合成冷冻EM图像中。
Cryo-electron microscopy (cryo-EM) has recently become a premier method for obtaining high-resolution structures of biological macromolecules. However, it is limited to biomolecular samples with low conformational heterogeneity, where all the conformations can be well-sampled at many projection angles. While cryo-EM technically provides single-molecule data for heterogeneous molecules, most existing reconstruction tools cannot extract the full distribution of possible molecular configurations. To overcome these limitations, we build on a prior Bayesian approach and develop an ensemble refinement framework that estimates the ensemble density from a set of cryo-EM particles by reweighting a prior ensemble of conformations, e.g., from molecular dynamics simulations or structure prediction tools. Our work is a general approach to recovering the equilibrium probability density of the biomolecule directly in conformational space from single-molecule data. To validate the framework, we study the extraction of state populations and free energies for a simple toy model and from synthetic cryo-EM images of a simulated protein that explores multiple folded and unfolded conformations.