论文标题

某些独立图的超级边缘魔术总强度

Super edge-magic total strength of some unicyclic graphs

论文作者

Deepthi, Nayana Shibu

论文摘要

令$ g $为有限的简单无向$(p,q)$ - 图形,带有顶点套装$ v(g)$和edge set $ e(g)$,以便$ p = | v(g)| $和$ q = | e(g)| $。超级边缘杂物总标签$ g $的$ g $是一个双重$ f \ colon v(g)\ cup e(g)\ longrightArrow \ {1,2,\ dots,p+q \} $,使得所有edgges $ u v \ in e(g)$,$ f(u)$ f(u)+f(u)+f(u)+f(f)常数,$ f(v(g))= \ {1,\ dots,p \} $。所有$ c(f)$的最低限度,其中最低限度在所有超级边缘魔法总标签上$ f $ $ g $,定义为图形$ g $的超级边缘魔术总强度。在本文中,我们将处理某些类别的单周期图,并提供大量证据,以猜测某个单轮循环$(p,q)$ - 图形等于$ 2q+\ frac {n+3} {2} $。

Let $G$ be a finite simple undirected $(p,q)$-graph, with vertex set $V(G)$ and edge set $E(G)$ such that $p=|V(G)|$ and $q=|E(G)|$. A super edge-magic total labeling $f$ of $G$ is a bijection $f\colon V(G)\cup E(G)\longrightarrow \{1,2,\dots , p+q\}$ such that for all edges $u v\in E(G)$, $f(u)+f(v)+f(u v)=c(f)$, where $c(f)$ is called a magic constant, and $f(V(G))=\{1,\dots , p\}$. The minimum of all $c(f)$, where the minimum is taken over all the super edge-magic total labelings $f$ of $G$, is defined to be the super edge-magic total strength of the graph $G$. In this article, we work on certain classes of unicyclic graphs and provide shreds of evidence to conjecture that the super edge-magic total strength of a certain family of unicyclic $(p,q)$-graphs is equal to $2q+\frac{n+3}{2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源