论文标题
特征级别的自然语言理解
Feature-Level Debiased Natural Language Understanding
论文作者
论文摘要
自然语言理解(NLU)模型通常依赖于数据集偏见,而不是预期的与任务相关的功能来实现特定数据集的高性能。结果,这些模型在训练分布之外的数据集上的性能较差。最近的一些研究通过在培训过程中减少偏见样本的权重来解决这个问题。但是,这些方法仍在表示表示中编码有偏见的潜在特征,而忽略了偏见的动态性质,这阻碍了模型预测。我们提出了一种名为“对比度学习”(DCT)的NLU偏见方法,以同时缓解基于对比学习的上述问题。我们通过选择最小相似的偏见的阳性样本来设计一种偏见,积极的采样策略来减轻偏见的潜在特征。我们还提出了一种动态的负抽样策略,以通过使用偏置模型动态选择最相似的偏置负面样本来捕获偏差的动态影响。我们在三个NLU基准数据集上进行实验。实验结果表明,在保持分布性能的同时,DCT在分布数据集上的最先进基准都优于最先进的基准。我们还验证了DCT可以减少模型表示形式中的偏见潜在特征。
Natural language understanding (NLU) models often rely on dataset biases rather than intended task-relevant features to achieve high performance on specific datasets. As a result, these models perform poorly on datasets outside the training distribution. Some recent studies address this issue by reducing the weights of biased samples during the training process. However, these methods still encode biased latent features in representations and neglect the dynamic nature of bias, which hinders model prediction. We propose an NLU debiasing method, named debiasing contrastive learning (DCT), to simultaneously alleviate the above problems based on contrastive learning. We devise a debiasing, positive sampling strategy to mitigate biased latent features by selecting the least similar biased positive samples. We also propose a dynamic negative sampling strategy to capture the dynamic influence of biases by employing a bias-only model to dynamically select the most similar biased negative samples. We conduct experiments on three NLU benchmark datasets. Experimental results show that DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance. We also verify that DCT can reduce biased latent features from the model's representation.