论文标题
能量摩托明的决定因素的重力:天体物理意义
Gravity from the Determinant of the Energy-Momentum: Astrophysical Implications
论文作者
论文摘要
第二级张量的决定因素对于形成通常不变的术语有用,如重力作用的体积元素而言。在这里,我们将物质字段的操作扩展到其能量摩托明的决定因素的任意函数$ f(d)$,以及指标,$ d = | \ textbf {det} .t |/| \ textbf {det} .g | $。我们得出引力场方程,并检查决定因子诱导的非线性项,具体是能量弹药张量的倒数。我们还表明,这些扩展需要对真空的非零应力能量张量。我们提出了一个无尺度模型,$ f(d)=λd^{1/4} $,并展示它如何通过围绕真空的压力 - 能量能量扩展能量张量来诱导熟悉的不变术语。我们通过提供无量纲常数$λ$的相关值来研究中子星的静水平衡方程。我们表明,在群众关系中,对状态方程敏感的一般相对性的预测与$λ\ sim -10^{ - 2} $显然是显着的。我们还表明,当将模型应用于早期辐射时代时,该模型不会影响原始核合成的预测。这种新颖而陌生的重力耦合可以导致重力物理学的丰富现象学。
Determinants of the second-rank tensors stand useful in forming generally invariant terms as in the case of the volume element of the gravitational actions. Here, we extend the action of the matter fields by an arbitrary function $f(D)$ of the determinants of their energy-momentum, and the metric, $D=|\textbf{det}.T|/|\textbf{det}.g|$. We derive the gravitational field equations and examine the nonlinear terms induced by the determinant, specifically, the inverse of the energy-momentum tensor. We also show that these extensions require a nonzero stress-energy tensor for the vacuum. We propose a scale-free model, $f(D)=λD^{1/4}$, and show how it induces the familiar invariant terms formed by the trace of the energy-momentum tensor by expanding the action around the stress-energy of the vacuum. We study the hydrostatic equilibrium equations for a neutron star by providing relevant values of the dimensionless constant $λ$. We show that the differences from the predictions of general relativity, in the mass-radius relations, which are sensitive to the equations of state, are conspicuous for $λ\sim -10^{-2}$. We also show that the model does not affect the predictions on the primordial nucleosynthesis when it is applied to the early radiation era. This novel and unfamiliar type of gravity-matter coupling can lead to a rich phenomenology in gravitational physics.