论文标题

部分可观测时空混沌系统的无模型预测

A Survey on Natural Language Processing for Programming

论文作者

Zhu, Qingfu, Luo, Xianzhen, Liu, Fang, Gao, Cuiyun, Che, Wanxiang

论文摘要

编程的自然语言处理旨在使用NLP技术来协助编程。它在提高生产率方面的有效性越来越普遍。与自然语言不同的是,一种编程语言具有高度结构化和功能性。构建基于结构的表示和面向功能的算法是程序理解和生成的核心。在本文中,我们从基于结构和面向功能的属性的角度进行了系统的审查,涵盖了任务,数据集,评估方法,技术和模型,旨在了解每个组件中两个属性的作用。根据分析,我们说明了未开发的领域,并提出了未来工作的潜在方向。

Natural language processing for programming aims to use NLP techniques to assist programming. It is increasingly prevalent for its effectiveness in improving productivity. Distinct from natural language, a programming language is highly structured and functional. Constructing a structure-based representation and a functionality-oriented algorithm is at the heart of program understanding and generation. In this paper, we conduct a systematic review covering tasks, datasets, evaluation methods, techniques, and models from the perspective of the structure-based and functionality-oriented property, aiming to understand the role of the two properties in each component. Based on the analysis, we illustrate unexplored areas and suggest potential directions for future work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源