论文标题
得出最简单的量规弦二重性-I:开放式开放式试验性
Deriving the Simplest Gauge-String Duality -- I: Open-Closed-Open Triality
论文作者
论文摘要
我们制定了一种在传统的“ hooft th Hooft大$ n $ loce”中,将封闭的弦二列表得出最简单的量规理论,即最简单的量规理论。在第一篇论文的第一部分中,我们提出并验证了(镜子)对封闭拓扑弦理论的明确对应。在A模型侧,这是一个超对称$ sl(2,\ mathbb {r})_ 1/u(1)$ kazama-suzuki coset(背景动量模式打开了)。镜子b型描述是根据landau-ginzburg理论,具有超电势$ w(z)= \ frac {1} {z} {z}+t_2z $及其变形。我们通过“开放式开放式试验”来到这些双人双重。这是相同封闭的字符串理论应该存在的两个打开字符串描述,具体取决于封闭字符串如何从开放的字符串模式中表现出来。将此想法应用于Hermitian矩阵模型,可为Imbimbo-Mukhi矩阵模型提供精确的映射。已知后一个模型可以捕获自偶半径上的$ C = 1 $字符串理论的物理相关因子,从而,该理论具有上述等效的拓扑字符串描述。这使我们能够在原始矩阵模型和双重封闭字符串的单个跟踪算子之间建立相关因素,与所有属的平等。最后,我们评论了如何通过嵌入完整的广告/CFT对应关系中来查看这种最简单的二元性。
We lay out an approach to derive the closed string dual to the simplest possible gauge theory, a single hermitian matrix integral, in the conventional 't Hooft large $N$ limit. In this first installment of three papers, we propose and verify an explicit correspondence with a (mirror) pair of closed topological string theories. On the A-model side, this is a supersymmetric $SL(2, \mathbb{R})_1/U(1)$ Kazama-Suzuki coset (with background momentum modes turned on). The mirror B-model description is in terms of a Landau-Ginzburg theory with superpotential $W(Z)=\frac{1}{Z}+t_2Z$ and its deformations. We arrive at these duals through an "open-closed-open triality". This is the notion that two open string descriptions ought to exist for the same closed string theory depending on how closed strings manifest themselves from open string modes. Applying this idea to the hermitian matrix model gives an exact mapping to the Imbimbo-Mukhi matrix model. The latter model is known to capture the physical correlators of the $c=1$ string theory at self-dual radius, which, in turn, has the equivalent topological string descriptions given above. This enables us to establish the equality of correlators, to all genus, between single trace operators in our original matrix model and those of the dual closed strings. Finally, we comment on how this simplest of dualities might be fruitfully viewed in terms of an embedding into the full AdS/CFT correspondence.