论文标题
随机旋转网络上的纠缠负态
Entanglement Negativity on Random Spin Networks
论文作者
论文摘要
我们研究了3D空间几何形状的量子状态的多部分纠缠,该量子通过具有固定区域的广义随机自旋网络描述,在背景无关的量子重力方法的背景下。在我们的环境中,我们将重点放在纠缠否定性上,是量子3D空间区域边界的通用子区域的量子相关性的明确定义的见证人。特别是,我们考虑了开放旋转网络状态边界的通用三站,并计算了一个沉浸在环境C中的两个边界子区域A和B的典型rényi负性,对于一组简单的开放随机旋转网络状态明确明确。我们使用自旋网络的随机特征来利用复制品和随机平均技术,通过经典的广义伊辛模型对应关系来得出典型的rényi负面,通常用于大型键合度中的随机张量网络。对于触觉相关的随机自旋网络状态(仅位于网络边缘上的旋转之间的局部纠缠状态),我们发现典型的对数消极情绪显示全息特征,与随机张量网络的结果一致,以较大的自旋限制。当在顶点处的互穿跨互联网之间的非本地散装纠缠被认为会增加,而同时全息缩放通常会受到大量贡献的扰动。
We investigate multipartite entanglement for quantum states of 3d space geometry, described via generalised random spin networks with fixed areas, in the context of background independent approaches to quantum gravity. We focus on entanglement negativity as a well defined witness of quantum correlations for mixed states, in our setting describing generic subregions of the boundary of a quantum 3d region of space. In particular, we consider a generic tripartition of the boundary of an open spin network state and we compute the typical Rényi negativity of two boundary subregions A and B immersed in the environment C, explicitly for a set of simple open random spin network states. We use the random character of the spin network to exploit replica and random average techniques to derive the typical Rényi negativty via a classical generalised Ising model correspondence, generally used for random tensor networks in the large bond regime. For trivially correlated random spin network states, with only local entanglement between spins located on the network edges, we find that typical log negativity displays a holographic character, in agreement with the results for random tensor networks, in large spin limit. When non-local bulk entanglement between intertwiners at the vertices is considered the negativity increases, while at the same time the holographic scaling is generally perturbed by the bulk contribution.