论文标题

贝叶斯弧长生存分析模型(BALSAM):艾滋病毒/艾滋病临床试验的理论和应用

Bayesian Arc Length Survival Analysis Model (BALSAM): Theory and Application to an HIV/AIDS Clinical Trial

论文作者

Gao, Yan, Sparapani, Rodney A., Basu, Sanjib

论文摘要

随机波动通常意味着考虑到现实世界应用的动态性质,很难捕获的风险增加。我们建议使用ARC长度(一种数学概念)来量化累积变化(随时间变化),以更充分地表征随机波动。 COX比例危害模型在生存分析中定义的危险率被假定受到纵向变量的瞬时值的影响。但是,当累积变化对危害产生重大影响时,该假设值得怀疑。我们提出的贝叶斯弧长度生存分析模型(BALSAM)通过合成三个平行组件(联合模型,分布式滞后模型和弧长),将弧长注入弧长。我们说明了在模拟研究中使用香脂的使用,并将其应用于HIV/AIDS临床试验,以评估CD4计数(关键的纵向生物标志物)对死亡率的累积变化的影响,同时考虑了测量误差和相关变量。

Stochastic volatility often implies increasing risks that are difficult to capture given the dynamic nature of real-world applications. We propose using arc length, a mathematical concept, to quantify cumulative variations (the total variability over time) to more fully characterize stochastic volatility. The hazard rate, as defined by the Cox proportional hazards model in survival analysis, is assumed to be impacted by the instantaneous value of a longitudinal variable. However, when cumulative variations pose a significant impact on the hazard, this assumption is questionable. Our proposed Bayesian Arc Length Survival Analysis Model (BALSAM) infuses arc length into a united statistical framework by synthesizing three parallel components (joint models, distributed lag models, and arc length). We illustrate the use of BALSAM in simulation studies and also apply it to an HIV/AIDS clinical trial to assess the impact of cumulative variations of CD4 count (a critical longitudinal biomarker) on mortality while accounting for measurement errors and relevant variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源