论文标题

在氧化细铁颗粒的表面化学吸收上:从分子动力学模拟获得的见解

On the surface chemisorption of oxidizing fine iron particles: insights gained from molecular dynamics simulations

论文作者

Thijs, L. C, Kritikos, E., Giusti, A., Ramaekers, W. J. S, van Oijen, J. A., de Goey, L. P. H, Mi, X. C.

论文摘要

进行分子动力学(MD)模拟,以研究铁(-OXIDE)和空气的组合,研究热和质量适应系数(分别为TAC和MAC)。然后将所获得的TAC和MAC值用于点粒子Knudsen模型中,以研究化学吸附和Knudsen过渡方案对(细)铁颗粒燃烧行为的影响。 $ \ mathrm {fe} $与$ \ mathrm {n_2} $和$ \ mathrm {fe_xo_y} $与$ \ mathrm {o_2} $的相互作用的热量住宿。 $ z_ \ mathrm {o} $,代表$ \ mathrm {o}/\ left的摩尔比(\ mathrm {o} + \ mathrm {fe} \ right)$和不同的表面温度。 MAC从unity快速降低到0.03,因为$ z_ \ mathrm {o} $从0增加到0.5,然后减少为$ z_ \ mathrm {o} $进一步增加到0.57。通过将MD信息的适应系数纳入单铁颗粒燃烧模型中,与先前开发的连续体模型获得的结果相比,可以观察到单个铁颗粒的新温度演化。具体而言,本模拟的结果表明,氧化过程在粒子达到峰值温度后继续进行,而先前的模型预测粒子被氧化为$ z_ \ mathrm {o} = 0.5 $时达到了最大温度。由于氧化速率随着MAC随着氧化阶段的增加而减小,因此热量损耗超过了达到最高温度时的热量释放速率,而粒子尚未氧化为$ Z_ \ MATHRM {O} = 0.5 $。最后,研究并讨论了过渡期热和传质对细铁颗粒燃烧行为的影响。

Molecular dynamics (MD) simulations are performed to investigate the thermal and mass accommodation coefficients (TAC and MAC, respectively) for the combination of iron(-oxide) and air. The obtained values of TAC and MAC are then used in a point-particle Knudsen model to investigate the effect of chemisorption and the Knudsen transition regime on the combustion behavior of (fine) iron particles. The thermal accommodation for the interactions of $\mathrm{Fe}$ with $\mathrm{N_2}$ and $\mathrm{Fe_xO_y}$ with $\mathrm{O_2}$ is investigated for different surface temperatures, while the mass accommodation coefficient for iron(-oxide) with oxygen is investigated for different initial oxidation stages $Z_\mathrm{O}$, which represents the molar ratio of $\mathrm{O}/\left(\mathrm{O} + \mathrm{Fe}\right)$, and different surface temperatures. The MAC decreases fast from unity to 0.03 as $Z_\mathrm{O}$ increases from 0 to 0.5 and then diminishes as $Z_\mathrm{O}$ further increases to 0.57. By incorporating the MD-informed accommodation coefficients into the single iron particle combustion model,a new temperature evolution for single iron particles is observed compared to results obtained with previously developed continuum models. Specifically, results of the present simulations show that the oxidation process continues after the particle reaching the peak temperature, while previous models predicting that the maximum temperature was attained when the particle is oxidized to $Z_\mathrm{O} = 0.5$. Since the rate of oxidation slows down as the MAC decreases with an increasing oxidation stage, the rate of heat loss exceeds the rate of heat release upon reaching the maximum temperature, while the particle is not yet oxidized to $Z_\mathrm{O} = 0.5$. Finally, the effect of transition-regime heat and mass transfer on the combustion behavior of fine iron particles is investigated and discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源