论文标题
跟踪激光阈值以上的特殊点
Tracking exceptional points above laser threshold
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Recent studies on non-Hermitian optical systems having exceptional points (EPs) have revealed a host of unique characteristics associated with these singularities, including unidirectional invisibility, chiral mode switching and laser self-termination, to mention just a few examples. The vast majority of these works focused either on passive systems or active structures where the EPs were accessed below the lasing threshold, i.e. when the system description is inherently linear. In this work, we experimentally demonstrate that EP singularities in coupled semiconductor nanolasers can be accessed and tracked above the lasing threshold, where they become branch points of a nonlinear dynamical system. Contrary to the common belief that unavoidable cavity detuning will impede the formation of an EP, here we demonstrate that this same detuning is necessary for compensating the carrier-induced frequency shift, hence restoring the nonlinear EP in the lasing regime. Furthermore, unlike linear non-Hermitian systems, we find that the spectral location of EPs above laser threshold varies as a function of total pump power and can therefore be continuously tracked. Our work is a first step towards the realization of lasing EPs in more complex laser geometries, and enabling the enhancement of photonic local density of states through non-Hermitian symmetries combined with nonlinear interactions in coupled laser arrays.