论文标题

带有行约束和特征值分布的随机矩阵

Random matrices with row constraints and eigenvalue distributions of graph Laplacians

论文作者

Akara-pipattana, Pawat, Evnin, Oleg

论文摘要

零行总和的对称矩阵发生在许多理论设置和现实生活中。当此类矩阵的offiagonal元素为I.I.D.随机变量和矩阵很大,特征值分布会收敛到特殊的通用曲线$ p _ {\ mathrm {zrs}}}(λ)$,看起来像是wigner semicircle和高斯分布之间的交叉点。该曲线的分析理论最初是由于fyodorov引起的,可以使用基于超对称的技术开发。 我们将这些派生扩展到稀疏矩阵的情况,其中包括图形Laplacians的重要情况,用于大型随机图,其$ n $ n $顶点为平均度$ c $。在制度$ 1 \ ll c \ ll n $中,普通图拉普拉斯(Grone Graph laplacian)的特征分布(以每个边缘为固定的过渡速率扩散)倾向于$ p _ {\ mathrm {zrs}}(Zrs}}}(λ)$ c $ c $ c $ sim with $ \ sqr的​​转移和缩放版本。在较小的$ c $时,此曲线以$ 1/\ sqrt {C} $准确地捕获了我们的理论的校正。对于标准化的图形拉普拉斯(每个顶点的固定过渡速率的扩散),大$ C $限制是一个移动和缩放的Wigner半圆,再次通过我们的分析捕获了校正。

Symmetric matrices with zero row sums occur in many theoretical settings and in real-life applications. When the offdiagonal elements of such matrices are i.i.d. random variables and the matrices are large, the eigenvalue distributions converge to a peculiar universal curve $p_{\mathrm{zrs}}(λ)$ that looks like a cross between the Wigner semicircle and a Gaussian distribution. An analytic theory for this curve, originally due to Fyodorov, can be developed using supersymmetry-based techniques. We extend these derivations to the case of sparse matrices, including the important case of graph Laplacians for large random graphs with $N$ vertices of mean degree $c$. In the regime $1\ll c\ll N$, the eigenvalue distribution of the ordinary graph Laplacian (diffusion with a fixed transition rate per edge) tends to a shifted and scaled version of $p_{\mathrm{zrs}}(λ)$, centered at $c$ with width $\sim\sqrt{c}$. At smaller $c$, this curve receives corrections in powers of $1/\sqrt{c}$ accurately captured by our theory. For the normalized graph Laplacian (diffusion with a fixed transition rate per vertex), the large $c$ limit is a shifted and scaled Wigner semicircle, again with corrections captured by our analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源