论文标题

在3D医疗图像上求解样品级别的分布式检测

Solving Sample-Level Out-of-Distribution Detection on 3D Medical Images

论文作者

Frolova, Daria, Vasiliuk, Anton, Belyaev, Mikhail, Shirokikh, Boris

论文摘要

当数据来自不同于培训的分布时,深度学习(DL)模型的性能往往会差。在医学成像等关键应用中,分布(OOD)检测有助于识别此类数据样本,从而提高模型的可靠性。最近的工作开发了基于DL的OOD检测,可在2D医学图像上取得有希望的结果。但是,在3D图像上缩放大多数方法在计算上是棘手的。此外,当前的3D解决方案努力在检测合成样品的情况下获得可接受的结果。这样有限的性能可能表明DL通常会效率低下嵌入大量的体积图像。我们认为,使用原始CT或MRI扫描的强度直方图作为嵌入具有描述性足以运行OOD检测。因此,我们提出了一种基于直方图的方法,该方法不需要DL,并且在该域中获得了几乎完美的结果。我们的提议得到了两个方面的支持。我们评估了公开可用数据集中的性能,在大多数设置中,我们的方法在其中分数AUROC。而且,我们在医疗外部挑战中得分第二,而没有微调和利用特定于任务的知识。仔细讨论局限性,我们得出的结论是,我们的方法在当前环境中解决了3D医疗图像的样本级OOD检测。

Deep Learning (DL) models tend to perform poorly when the data comes from a distribution different from the training one. In critical applications such as medical imaging, out-of-distribution (OOD) detection helps to identify such data samples, increasing the model's reliability. Recent works have developed DL-based OOD detection that achieves promising results on 2D medical images. However, scaling most of these approaches on 3D images is computationally intractable. Furthermore, the current 3D solutions struggle to achieve acceptable results in detecting even synthetic OOD samples. Such limited performance might indicate that DL often inefficiently embeds large volumetric images. We argue that using the intensity histogram of the original CT or MRI scan as embedding is descriptive enough to run OOD detection. Therefore, we propose a histogram-based method that requires no DL and achieves almost perfect results in this domain. Our proposal is supported two-fold. We evaluate the performance on the publicly available datasets, where our method scores 1.0 AUROC in most setups. And we score second in the Medical Out-of-Distribution challenge without fine-tuning and exploiting task-specific knowledge. Carefully discussing the limitations, we conclude that our method solves the sample-level OOD detection on 3D medical images in the current setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源