论文标题

使用多任务学习的身体细分

Body Segmentation Using Multi-task Learning

论文作者

Jug, Julijan, Lampe, Ajda, Štruc, Vitomir, Peer, Peter

论文摘要

人体细分是许多涉及人类图像的计算机视觉问题的重要步骤,也是影响所有下游任务性能的关键组成部分之一。几项先前的工作使用多任务模型解决了此问题,该模型利用不同任务之间的相关性以提高细分性能。基于此类解决方案的成功,我们在本文中介绍了一种新型的人类分割/解析的多任务模型,涉及三个任务,即(i)基于关键点的骨骼估计,(ii)密集的姿势预测和(iii)人体男性分割。拟议的分割 - 置换密度模型(或简称SPD)背后的主要思想是通过在不同但相关的任务上共享知识来学习更好的分割模型。 SPD基于共享的深神经网络骨架,该主链分支为三个特定于任务的模型头,并使用多任务优化目标学习。通过在LIP和ATR数据集上的严格实验以及与最近(最新的)多任务多任务身体分割模型相比,通过严格的实验进行了模型的性能。还提出了全面的消融研究。我们的实验结果表明,拟议的多任务(分段)模型具有很高的竞争力,并且引入其他任务有助于更高的整体分割性能。

Body segmentation is an important step in many computer vision problems involving human images and one of the key components that affects the performance of all downstream tasks. Several prior works have approached this problem using a multi-task model that exploits correlations between different tasks to improve segmentation performance. Based on the success of such solutions, we present in this paper a novel multi-task model for human segmentation/parsing that involves three tasks, i.e., (i) keypoint-based skeleton estimation, (ii) dense pose prediction, and (iii) human-body segmentation. The main idea behind the proposed Segmentation--Pose--DensePose model (or SPD for short) is to learn a better segmentation model by sharing knowledge across different, yet related tasks. SPD is based on a shared deep neural network backbone that branches off into three task-specific model heads and is learned using a multi-task optimization objective. The performance of the model is analysed through rigorous experiments on the LIP and ATR datasets and in comparison to a recent (state-of-the-art) multi-task body-segmentation model. Comprehensive ablation studies are also presented. Our experimental results show that the proposed multi-task (segmentation) model is highly competitive and that the introduction of additional tasks contributes towards a higher overall segmentation performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源