论文标题
通过多模式对比学习的(仇恨)模因的演变
On the Evolution of (Hateful) Memes by Means of Multimodal Contrastive Learning
论文作者
论文摘要
在线仇恨模因的传播对社交媒体平台和现实世界产生了不利影响。发现可恨的模因具有挑战性,原因之一是模因的进化性质。新的仇恨模因可以通过将可恨的含义与其他文化思想或符号融合来出现。在本文中,我们提出了一个框架,该框架利用多模式对比度学习模型,尤其是Openai的剪辑,以确定可恨内容的目标,并系统地研究可恨模因的演变。我们发现,语义规律存在于剪辑生成的嵌入中,这些嵌入描述了同一模态(图像)或跨模态(图像和文本)中的语义关系。利用此属性,我们研究了如何通过结合多个图像的视觉元素或将文本信息与可恨的图像融合来创建可恶的模因。我们通过专注于反犹太模因,尤其是快乐的商人模因,展示了我们框架分析可恶模因演变的能力。使用我们从4chan提取的数据集上使用我们的框架,我们找到了3.3k的快乐商人模因变体,其中一些与特定的国家,人或组织相关。我们设想,我们的框架可以通过标记可恶的模因的新变体来帮助人类主持人,以便主持人可以手动验证它们并减轻在线仇恨内容的问题。
The dissemination of hateful memes online has adverse effects on social media platforms and the real world. Detecting hateful memes is challenging, one of the reasons being the evolutionary nature of memes; new hateful memes can emerge by fusing hateful connotations with other cultural ideas or symbols. In this paper, we propose a framework that leverages multimodal contrastive learning models, in particular OpenAI's CLIP, to identify targets of hateful content and systematically investigate the evolution of hateful memes. We find that semantic regularities exist in CLIP-generated embeddings that describe semantic relationships within the same modality (images) or across modalities (images and text). Leveraging this property, we study how hateful memes are created by combining visual elements from multiple images or fusing textual information with a hateful image. We demonstrate the capabilities of our framework for analyzing the evolution of hateful memes by focusing on antisemitic memes, particularly the Happy Merchant meme. Using our framework on a dataset extracted from 4chan, we find 3.3K variants of the Happy Merchant meme, with some linked to specific countries, persons, or organizations. We envision that our framework can be used to aid human moderators by flagging new variants of hateful memes so that moderators can manually verify them and mitigate the problem of hateful content online.