论文标题

涉及表面测量的多谐和方程

Polyharmonic equations involving surface measures

论文作者

Müller, Marius

论文摘要

本文研究(最佳)$ w^{2m-1,\ infty} $ - polyharmonic方程$( - δ)^m u = q \; \mathcal{H}^{n-1} \llcorner Γ$, where $Γ$ is a (suitably regular) $(n-1)$-dimensional submanifold of $\mathbb{R}^n$, $\mathcal{H}^{n-1}$ is the Hausdorff measure, and $Q$ is some suitably regular density.我们在[9]中扩展了发现,其中二阶方程$ - \ mathrm {div}(a(x)\ nabla u)= q \; \ Mathcal {h}^{n-1} \llcornerγ$。作为一个应用程序,我们得出(最佳)$ w^{3,\ infty} $ - 在两个维度上的Biharmonic Alt-Caffarelli问题解决方案的规律性。

This article studies (optimal) $W^{2m-1,\infty}$-regularity for the polyharmonic equation $(-Δ)^m u = Q \; \mathcal{H}^{n-1} \llcorner Γ$, where $Γ$ is a (suitably regular) $(n-1)$-dimensional submanifold of $\mathbb{R}^n$, $\mathcal{H}^{n-1}$ is the Hausdorff measure, and $Q$ is some suitably regular density. We extend findings in [9], where the second-order equation $-\mathrm{div}(A(x)\nabla u) = Q \; \mathcal{H}^{n-1} \llcorner Γ$ is studied. As an application we derive (optimal) $W^{3,\infty}$-regularity for solutions of the biharmonic Alt-Caffarelli problem in two dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源