论文标题

用K-均值的量子聚类:一种混合方法

Quantum Clustering with k-Means: a Hybrid Approach

论文作者

Poggiali, Alessandro, Berti, Alessandro, Bernasconi, Anna, Del Corso, Gianna M., Guidotti, Riccardo

论文摘要

量子计算是基于用于执行快速计算的量子理论的有希望的范式。对于某些任务(包括机器学习)的计算复杂性,量子算法有望超过其经典算法。在本文中,我们设计,实施和评估三种混合量子K-均值算法,利用不同程度的并行性。实际上,每种算法都会逐步利用量子并行性,以将群集分配的复杂性降低到恒定成本。特别是,我们利用量子现象来加快距离的计算。核心思想是,可以同时执行记录和质心之间距离的计算,从而节省了时间,尤其是对于大数据集。我们表明,混合量子K-均值算法比经典版本更有效,仍然获得可比的聚类结果。

Quantum computing is a promising paradigm based on quantum theory for performing fast computations. Quantum algorithms are expected to surpass their classical counterparts in terms of computational complexity for certain tasks, including machine learning. In this paper, we design, implement, and evaluate three hybrid quantum k-Means algorithms, exploiting different degree of parallelism. Indeed, each algorithm incrementally leverages quantum parallelism to reduce the complexity of the cluster assignment step up to a constant cost. In particular, we exploit quantum phenomena to speed up the computation of distances. The core idea is that the computation of distances between records and centroids can be executed simultaneously, thus saving time, especially for big datasets. We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version, still obtaining comparable clustering results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源