论文标题

用于彩色的拉姆西编号的下限

A lower bound for set-colouring Ramsey numbers

论文作者

Aragão, Lucas, Collares, Maurício, Marciano, João Pedro, Martins, Taísa, Morris, Robert

论文摘要

固定颜色的Ramsey编号$ r_ {r,s}(k)$被定义为最低$ n $,这样,如果将完整图的每个边缘分配给$ k_n $的每个边缘,则从$ \ {1,\ ldots,r \} $中分配了一组$ s $颜色,其中一种颜色包含单色$ k $的单色$ k $。案例$ s = 1 $是通常的$ r $ - 彩色拉姆齐号,$ s = r -1 $由Erdős,Hajnal和Rado在1965年研究,以及1972年的Erdős和Szemerédi。 $ s $的第一个重要结果仅是最近才由Conlon,Fox,He,Mubayi,Suk和Verstraëte获得的,他们表明$ R_ {R,S}(K)= 2^{θ(KR)} $,如果$ S/R $从$ 0 $ 0 $ 0 $和$ 1 $中限制。但是,在$ s = r -o(r)$的范围内,它们的上限和下限显着差异。在本说明中,我们引入了一种新的(随机)着色,并使用它来确定$ r_ {r,s}(k)$ up up to the exponent中的polygarithmic因素,对于所有$ r $,$ s $和$ k $。

The set-colouring Ramsey number $R_{r,s}(k)$ is defined to be the minimum $n$ such that if each edge of the complete graph $K_n$ is assigned a set of $s$ colours from $\{1,\ldots,r\}$, then one of the colours contains a monochromatic clique of size $k$. The case $s = 1$ is the usual $r$-colour Ramsey number, and the case $s = r - 1$ was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general $s$ were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that $R_{r,s}(k) = 2^{Θ(kr)}$ if $s/r$ is bounded away from $0$ and $1$. In the range $s = r - o(r)$, however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) colouring, and use it to determine $R_{r,s}(k)$ up to polylogarithmic factors in the exponent for essentially all $r$, $s$ and $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源