论文标题
哈密顿的理性异构粒细胞变形系统的结构
Hamiltonian structure of rational isomonodromic deformation systems
论文作者
论文摘要
哈密顿的异构粒细胞变形系统的方法扩展到了Riemann Sphere上的通用合理协方差衍生物操作员,并具有任意庞加莱等级的不规则奇异性。具有给定极学位的理性连接空间带有自然泊松结构,该结构对应于双空间上的标准经典R-matrix结构$ l^*gl(r)$ llgebra $ lgl(r)$。通过将变形参数识别为相位空间上的Casimir函数,获得了光谱不变性产生的异构异构粒细胞系统的非自主异构粒细胞。这些证明与较高的Birkhoff不变式相吻合,这些不变剂确定局部渐近差与不规则的奇异点以及极点基因座一起。无限的异构词异构变形显示是由哈密顿矢量场的总和和一个显式衍生物矢量场产生的,该载体矢量场横向横向均匀叶面。 Casimir元素用作坐标,补充了沿着象征性叶子的元素,这是由形式单构的指数扩展而来的,定义了它们之间的局部符号呈现。显式导数矢量场保留了泊松结构并定义了平坦的横向连接,跨越了一个可集成的分布,其叶子在本地可以识别为自由阿贝利安基团的轨道。在此动作下,无限的异构粒细胞变形场的投影向矢量场的投影使通勤的汉密尔顿载体场与伯克霍夫不变式和极点位点的频谱不变性相对应。
The Hamiltonian approach to isomonodromic deformation systems is extended to include generic rational covariant derivative operators on the Riemann sphere with irregular singularities of arbitrary Poincaré rank. The space of rational connections with given pole degrees carries a natural Poisson structure corresponding to the standard classical rational R-matrix structure on the dual space $L^*gl(r)$ of the loop algebra $Lgl(r)$. Nonautonomous isomonodromic counterparts of the isospectral systems generated by spectral invariants are obtained by identifying the deformation parameters as Casimir functions on the phase space. These are shown to coincide with the higher Birkhoff invariants determining the local asymptotics near to irregular singular points, together with the pole loci. Infinitesimal isomonodromic deformations are shown to be generated by the sum of the Hamiltonian vector field and an explicit derivative vector field that is transversal to the symplectic foliation. The Casimir elements serve as coordinates complementing those along the symplectic leaves, extended by the exponents of formal monodromy, defining a local symplectomorphism between them. The explicit derivative vector fields preserve the Poisson structure and define a flat transversal connection, spanning an integrable distribution whose leaves, locally, may be identified as the orbits of a free abelian group. The projection of the infinitesimal isomonodromic deformations vector fields to the quotient manifold under this action gives the commuting Hamiltonian vector fields corresponding to the spectral invariants dual to the Birkhoff invariants and the pole loci.