论文标题
$ k $ - 易于耐受的图形,用于$ p $脱节的订单$ c $的完整图
$k$-fault-tolerant graphs for $p$ disjoint complete graphs of order $c$
论文作者
论文摘要
Hayes〜 \ cite {Hayes1976}在1976年引入了顶点,耐受耐受性,从那时起,它是在不同方面进行系统地研究的。在本文中,我们研究了$ k $ - vertex-fault-parterant to $ p $ discoint的订单$ c $的完整图,即删除任何$ k $ vertices的图形留下的图形$ p $ discoint of $ p $ discoint of Coble $ c $的图形作为子图。主要贡献是描述具有$ k = 1 $,$ p \ geq 1 $和$ c \ geq 3 $的最小边缘数量的图形。此外,我们分析了此类图的某些属性,以任何$ k $的值。
Vertex-fault-tolerance was introduced by Hayes~\cite{Hayes1976} in 1976, and since then it has been systematically studied in different aspects. In this paper we study $k$-vertex-fault-tolerant graphs for $p$ disjoint complete graphs of order $c$, i.e., graphs in which removing any $k$ vertices leaves a graph that has $p$ disjoint complete graphs of order $c$ as a subgraph. The main contribution is to describe such graphs that have the smallest possible number of edges for $k=1$, $p \geq 1$, and $c \geq 3$. Moreover, we analyze some properties of such graphs for any value of $k$.