论文标题

测试高斯图形模型的图

Testing the Graph of a Gaussian Graphical Model

论文作者

Le, Thien-Minh, Zhong, Ping-Shou, Leng, Chenlei

论文摘要

高斯图形模型通常用于对多个随机变量的关节分布进行建模。它引起的图不仅对描述随机变量之间的关系有用,而且对于提高统计估计精度至关重要。在高维数据分析中,尽管有丰富的文献估算了该图结构,但在全球层面上对其规范的适当性进行了测试。为了取得进步,本文提出了一种新颖的合适性测试,该测试在计算上很容易且理论上可进行。在原假设下,结果表明,提出的测试统计量的渐近分布遵循牙龈分布。有趣的是,此限制牙龈分布的位置参数取决于零下的依赖性结构。当真实结构嵌套在假定的结构中时,我们进一步开发了一种新颖的一致性测试统计量,并通过扩增估计中产生的噪声。广泛的仿真表明,所提出的测试程序在零下具有正确的大小,并且在替代方面具有强大的功能。作为应用程序,我们将测试应用于COVID-19数据集的分析,表明我们的测试可以作为选择图形结构以提高估计效率的宝贵工具。

The Gaussian graphical model is routinely employed to model the joint distribution of multiple random variables. The graph it induces is not only useful for describing the relationship between random variables but also critical for improving statistical estimation precision. In high-dimensional data analysis, despite an abundant literature on estimating this graph structure, tests for the adequacy of its specification at a global level is severely underdeveloped. To make progress, this paper proposes a novel goodness-of-fit test that is computationally easy and theoretically tractable. Under the null hypothesis, it is shown that asymptotic distribution of the proposed test statistic follows a Gumbel distribution. Interestingly the location parameter of this limiting Gumbel distribution depends on the dependence structure under the null. We further develop a novel consistency-empowered test statistic when the true structure is nested in the postulated structure, by amplifying the noise incurred in estimation. Extensive simulation illustrates that the proposed test procedure has the right size under the null, and is powerful under the alternative. As an application, we apply the test to the analysis of a COVID-19 data set, demonstrating that our test can serve as a valuable tool in choosing a graph structure to improve estimation efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源