论文标题

非马克维亚随机毛 - 彼得斯基夫斯基方程

Non-Markovian stochastic Gross-Pitaevskii equation for the exciton-polariton Bose-Einstein condensate

论文作者

Alliluev, A. D., Makarov, D. V., Asriyan, N. A., Elistratov, A. A., Lozovik, Yu. E.

论文摘要

在本文中,提出了一个非马克维亚的毛皮pitaevskii方程来描述在不一致的泵送下激子 - 波利顿系统中冷凝物的形成。通过引入空间增量相关的噪声项,我们观察到随着温度升高,从空间有序相位到无序的相位。在此过程中,冷凝水的种群大大减少。揭示了在过渡温度上方的不规则位置的冷凝水的密集斑点。使用Gabor变换,可以表明,随着温度的升高,冷凝水的脱位,伴随着从窄带到宽带光谱密度的过渡。

In this paper, a non-Markovian Gross-Pitaevskii equation is proposed to describe the formation of a condensate in an exciton-polariton system under incoherent pumping. By introducing spatially delta-correlated noise terms, we observe a transition from a spatially ordered phase to a disordered one as the temperature increases. In course of this process, the population of the condensate is significantly reduced. Irregularly located separate dense spots of condensate above the transition temperature are revealed. Using the Gabor transform, it is shown that, with increasing temperature, the condensate decoheres, that is accompanied by the transition from narrowband to broadband spectral density.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源