论文标题

使用LIDAR使用路径计划的自动驾驶汽车导航

Autonomous Vehicle Navigation with LIDAR using Path Planning

论文作者

K, Rahul M, B, Sumukh, Uppunda, Praveen L, Raju, Vinayaka, Gururaj, C

论文摘要

在本文中,实施了一个完整的自动自动驾驶框架。 LIDAR,相机和IMU传感器一起使用。使用机器人操作系统对整个数据通信进行管理,该机器人操作系统为实施机器人项目提供了强大的平台。 Jetson Nano用于提供功能强大的车载处理功能。传感器融合是对从不同传感器接收到的数据进行的,以提高我们从数据中得出的决策制定和推论的准确性。然后,该数据用于创建环境的局部图。在此步骤中,相对于使用传感器数据进行的映射获得了车辆的位置。用于此目的的不同大满贯技术是Hector映射和GMAPPEID,这些技术是ROS中广泛使用的映射技术。除了主要使用LiDAR数据的SLAM之外,使用单眼相机实现了视觉探测器。然后,自适应蒙特卡洛定位将传感器融合数据用于CAR定位。使用开发的局部图,实现了“ TEB计划者”和“动态窗口方法”(例如“ TEB计划者”)的路径规划技术来自动导航车辆。该项目的最后一步是控制控制,这是管道中的最终决策块,它为导航提供了与Ackermann运动学兼容的导航数据。使用三个传感器,即Lidar,Camera和IMU在ROS框架下实现此类控制块是在本项目中采用的一种新颖方法。

In this paper, a complete framework for Autonomous Self Driving is implemented. LIDAR, Camera and IMU sensors are used together. The entire data communication is managed using Robot Operating System which provides a robust platform for implementation of Robotics Projects. Jetson Nano is used to provide powerful on-board processing capabilities. Sensor fusion is performed on the data received from the different sensors to improve the accuracy of the decision making and inferences that we derive from the data. This data is then used to create a localized map of the environment. In this step, the position of the vehicle is obtained with respect to the Mapping done using the sensor data.The different SLAM techniques used for this purpose are Hector Mapping and GMapping which are widely used mapping techniques in ROS. Apart from SLAM that primarily uses LIDAR data, Visual Odometry is implemented using a Monocular Camera. The sensor fused data is then used by Adaptive Monte Carlo Localization for car localization. Using the localized map developed, Path Planning techniques like "TEB planner" and "Dynamic Window Approach" are implemented for autonomous navigation of the vehicle. The last step in the Project is the implantation of Control which is the final decision making block in the pipeline that gives speed and steering data for the navigation that is compatible with Ackermann Kinematics. The implementation of such a control block under a ROS framework using the three sensors, viz, LIDAR, Camera and IMU is a novel approach that is undertaken in this project.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源