论文标题
空气中风能系统的安全感知的混合控制
Safety-Aware Hybrid Control of Airborne Wind Energy Systems
论文作者
论文摘要
空中风能(AWE)对商业成功的行动进行的基本关注点是确保满足系统上的安全要求。但是,由于敬畏系统的高维复杂性,正式的数学鲁棒性确保难以计算。我们借鉴了汉密尔顿 - 雅各比(HJ)的可达性分析的研究,以计算跟踪飞行路径的最佳控制策略,同时在系统上执行安全限制。此外,HJ达到性分析中固有的计算值函数的零余量集表明向后触及的集合,这是一组状态集,可以将系统安全地将系统安全地驱动到给定时间内的目标集中而不输入不良状态。此外,我们得出了一项切换法律,因此可以与任意限制性控制器一起使用安全控制器来提供安全的混合控制法。在这样的设置中,只有在系统接近其机动性包络的边界时才激活安全控制器。这种混合控制定律是对现有的鲁棒控制方法的显着改善,通过假设始终假设最差的环境和系统行为来恶化性能。我们通过广泛的基于模拟的研究来说明我们的结果。
A fundamental concern in progressing Airborne Wind Energy (AWE) operations towards commercial success, is guaranteeing that safety requirements placed on the systems are met. Due to the high dimensional complexity of AWE systems, however, formal mathematical robustness guarantees become difficult to compute. We draw on research from Hamilton-Jacobi (HJ) reachability analysis to compute the optimal control policy for tracking a flight path, while enforcing safety constraints on the system. In addition, the zero-sublevel set of the computed value function inherent in HJ reachability analysis indicates the backward reachable set, the set of states from which it is possible to safely drive the system into a target set within a given time without entering undesirable states. Furthermore, we derive a switching law, such that the safety controller can be used in conjunction with arbitrary least restrictive controllers to provide a safe hybrid control law. In such a setup, the safety controller is only activated when the system approaches the boundary of its maneuverability envelope. Such a hybrid control law is a notable improvement over existing robust control approaches that deteriorate performance by assuming the worst-case environmental and system behavior at all times. We illustrate our results via extensive simulation-based studies.