论文标题

磁化物对Dilaton光子混合的影响

Magnetized matter effects on dilaton photon mixing

论文作者

Chaubey, Ankur, Jaiswal, Manoj K., Ganguly, Avijit K.

论文摘要

DILATON($ ϕ(x)$)是一类与缩放对称性及其补偿相关的骨值标量粒子(在违反同一的情况下)。由于两个光子耦合,它们可以在磁场中产生光学特征。在真空或普通物质中,它们将光子的横向极化状态之一融为一体。但是在磁性物质中,它们将两种光子的横向极化状态融为一体(由于出现了均等的奇偶校验,从磁性物质中侵犯了光子自能量的一部分)。由于与交互作用相关的不同离散(CPT)对称性的约束,这项工作的一部分是针对理解标量与光子各种光子的各种极化状态的问题。基于这些对称辅助论点,发现混合矩阵的结构为$ 3 \ times 3 $。因此,存在光子的不同极化状态到DILATON之间的振荡的有限概率。我们的分析和数值分析表明,对于该理论中参数的大多数一般值,在时间或空间方向上都不存在周期性振荡长度。这些结果可能会通过观测来检测这些结果。

Dilatons ($ϕ(x)$) are a class of bosonic scalar particles associated with scaling symmetry and its compensation (under the violations of the same). Due to two photon coupling, they can produce optical signatures in a magnetic field. In vacuum or plain matter they couple to one of the transversely polarized state of the photon. But in a magnetized matter, they couple to both the transversely polarized state of photon (due to emergence of a parity violating part of photon self energy contribution from a magnetized matter). A part of this work is directed towards understanding the issue of mixing of scalar with various polarizations states of photon in a medium ( magnetized or unmagnetized ) due to the constraints from different discrete (CPT) symmetries associated with the interaction. Based on these symmetry aided arguments, the structure of the mixing matrix is found to be $3 \times 3$. Thus there exists non-zero finite probabilities of oscillation between different polarization states of photon to dilaton. Our analytical and numerical analysis show no existence of periodic oscillation length either in temporal or spatial direction for most general values of the parameters in the theory. Possible astrophysical consequences of these results, those can be detected through observations are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源