论文标题

两个涉及三角形的Ramsey-Turán数字

Two Ramsey-Turán numbers involving triangles

论文作者

Hu, Xinyu, Lin, Qizhong

论文摘要

给定整数$ p,q \ ge2 $,我们说图$ g $是$(k_p,k_q)$ - 如果存在$ g $的红色/蓝色边缘着色,则免费,因此它既不包含红色$ k_p $也不包含蓝色$ k_q $。修复函数$ f(n)$,ramsey-turán编号$ rt({n,p,q,f(n))} $是$ n $ -vertex $(k_p,k_q)$的最大边数,最多具有独立$ f(n)$的自由图。对于任何$δ> 0 $,令$ρ(p,q,δ)= \ mathop {\ lim} \ limits_ {n \ to \ infty} \ frac {rt(n,p,q,q,Δn)} {n^2} $。我们始终调用$ρ(p,q):= \ mathop {\ lim} \ limits_ {δ\ to 0}ρ(p,q,q,δ)$ ramsey-turán密度为$ k_p $和$ k_q $。 在1993年,Erdős,Hajnal,Simonovits,Sós和Szemerédi提议确定$ρ(3,Q)$的价值(3,Q)$,$ Q \ ge3 $,他们猜想了$ q \ ge 2 $,$ q \ ge 2 $,$ρ\ weft({3,2Q -1}} \ right) \ frac {1} {r(3,q)-1})$。最近,Kim,Kim和Liu(2019)指出,对于$ q \ ge 2 $,$ρ({3,2Q})= \ frac {1} {1} {2} {2}(1 - \ frac {1} {1} {r({3,q}})})$。 Erdős等。 (1993年)确定$ρ(3,Q)$,$ Q = 3,4,5 $和$ρ(4,4)$。过去三十年来,Ramsey-Turán密度$ρ(P,Q)$没有进展。在本文中,我们获得$ρ(3,6)= \ frac {5} {12} $和$ρ(3,7)= \ frac {7} {16} $。此外,我们表明,相应的渐近极端结构是弱稳定的,它回答了Erdős等人的问题。 (1993)在这两个案例中。

Given integers $p, q\ge2$, we say that a graph $G$ is $(K_p,K_q)$-free if there exists a red/blue edge coloring of $G$ such that it contains neither a red $K_p$ nor a blue $K_q$. Fix a function $f( n )$, the Ramsey-Turán number $RT( {n,p,q,f( n ))} $ is the maximum number of edges in an $n$-vertex $(K_p,K_q)$-free graph with independence number at most $f( n )$. For any $δ>0$, let $ρ(p, q,δ) = \mathop {\lim }\limits_{n \to \infty } \frac{RT(n,p, q,δn)}{n^2}$. We always call $ρ(p, q):= \mathop {\lim }\limits_{δ\to 0}ρ(p, q,δ)$ the Ramsey-Turán density of $K_p$ and $K_q$. In 1993, Erdős, Hajnal, Simonovits, Sós and Szemerédi proposed to determine the value of $ρ(3,q)$ for $q\ge3$, and they conjectured that for $q \ge 2$, $ρ\left( {3,2q - 1} \right) = \frac{1}{2}(1 - \frac{1}{r(3,q) - 1})$. Recently, Kim, Kim and Liu (2019) conjectured that for $q \ge 2$, $ρ( {3,2q } ) = \frac{1}{2}( 1 - \frac{1}{r( {3,q} )})$. Erdős et al. (1993) determined $ρ(3,q)$ for $q=3,4,5$ and $ρ(4,4)$. There is no progress on the Ramsey-Turán density $ρ(p, q)$ in the past thirty years. In this paper, we obtain $ρ(3,6)=\frac{5}{12}$ and $ρ(3,7)=\frac{7}{16}$. Moreover, we show that the corresponding asymptotically extremal structures are weakly stable, which answers a problem of Erdős et al. (1993) for the two cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源