论文标题
深度学习的合成可能性近似,用于极端流的非平稳空间模型
A Deep Learning Synthetic Likelihood Approximation of a Non-stationary Spatial Model for Extreme Streamflow Forecasting
论文作者
论文摘要
极端流是洪水风险的关键指标,并量化非平稳气候条件下的分布变化是减轻洪水事件影响的关键。我们提出了一个非平稳过程混合模型(NPMM),用于美国中部(CUS)的年度流量最大值,该模型(CUS)使用降尺度的气候模型降水预测预测极端流量。该模型的空间依赖性指定为转化的高斯和最大稳定过程的凸组合,并由重量参数索引,该重量参数识别该过程的渐近状态。重量参数是根据CUS内两个水文区域中的每个降水的函数建模的,从而在模型中引入了时空非平稳性。 NPMM具有理想的尾巴依赖性柔性,但产生了棘手的可能性。为了解决这个问题,我们将神经网络嵌入了密度回归模型中,该模型用于使用具有不同参数设置的NPMM的模拟来学习合成的可能性函数。我们的模型使用1972--2021的观察数据拟合,并在贝叶斯框架中进行的推理。根据重量参数的后验分布,估计CU中的两个区域处于不同的渐近方案。基于两种代表性气候通路方案的全球气候模型的年度流量最大值估计表明,与1972 - 2005年的历史时期相比,2006 - 2035年极端流的频率和幅度的总体增加。
Extreme streamflow is a key indicator of flood risk, and quantifying the changes in its distribution under non-stationary climate conditions is key to mitigating the impact of flooding events. We propose a non-stationary process mixture model (NPMM) for annual streamflow maxima over the central US (CUS) which uses downscaled climate model precipitation projections to forecast extremal streamflow. Spatial dependence for the model is specified as a convex combination of transformed Gaussian and max-stable processes, indexed by a weight parameter which identifies the asymptotic regime of the process. The weight parameter is modeled as a function of the annual precipitation for each of the two hydrologic regions within the CUS, introducing spatio-temporal non-stationarity within the model. The NPMM is flexible with desirable tail dependence properties, but yields an intractable likelihood. To address this, we embed a neural network within a density regression model which is used to learn a synthetic likelihood function using simulations from the NPMM with different parameter settings. Our model is fitted using observational data for 1972--2021, and inference carried out in a Bayesian framework. The two regions within the CUS are estimated to be in different asymptotic regimes based on the posterior distribution of the weight parameter. Annual streamflow maxima estimates based on global climate models for two representative climate pathway scenarios suggest an overall increase in the frequency and magnitude of extreme streamflow for 2006-2035 compared to the historical period of 1972-2005.