论文标题

生成鲁棒分类

Generative Robust Classification

论文作者

Yin, Xuwang

论文摘要

训练对抗性稳健的歧视性(即软马克斯)分类器一直是强大分类的主要方法。在最新的对抗训练(基于)基于基于的生成模型的工作的基础上,我们研究了AT,以学习非构型的类辅助密度模型,然后进行生成稳健的分类。我们的结果表明,在类似的模型能力的条件下,生成鲁棒的分类器在测试数据清洁或测试扰动尺寸有限时,可以达到与基线软马克斯鲁棒分类器相当的性能,并且当测试扰动大小超过训练摄影尺寸时,则具有更高的性能。生成分类器还能够生成更类似于培训数据的样本或反事实,这表明生成性分类器可以更好地捕获类和条件分布。与标准判别性对抗训练相反,在加重体重平均时,高级数据增强技术才有效,我们发现应用高级数据增强以在我们的方法中实现更好的鲁棒性。我们的结果表明,生成分类器是稳健分类的竞争替代方案,尤其是对于有限的课程问题。

Training adversarially robust discriminative (i.e., softmax) classifier has been the dominant approach to robust classification. Building on recent work on adversarial training (AT)-based generative models, we investigate using AT to learn unnormalized class-conditional density models and then performing generative robust classification. Our result shows that, under the condition of similar model capacities, the generative robust classifier achieves comparable performance to a baseline softmax robust classifier when the test data is clean or when the test perturbation is of limited size, and much better performance when the test perturbation size exceeds the training perturbation size. The generative classifier is also able to generate samples or counterfactuals that more closely resemble the training data, suggesting that the generative classifier can better capture the class-conditional distributions. In contrast to standard discriminative adversarial training where advanced data augmentation techniques are only effective when combined with weight averaging, we find it straightforward to apply advanced data augmentation to achieve better robustness in our approach. Our result suggests that the generative classifier is a competitive alternative to robust classification, especially for problems with limited number of classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源