论文标题

神经网络的量子方法和对医学图像分类的应用

Quantum Methods for Neural Networks and Application to Medical Image Classification

论文作者

Landman, Jonas, Mathur, Natansh, Li, Yun Yvonna, Strahm, Martin, Kazdaghli, Skander, Prakash, Anupam, Kerenidis, Iordanis

论文摘要

已经提出了量子机学习技术,以潜在地提高机器学习应用中的性能。 在本文中,我们介绍了两种新的量子方法,用于神经网络。第一个是量子正交神经网络,该网络基于量子金字塔电路作为实现正交矩阵乘法的构件。我们提供了一种培训这种正交神经网络的有效方法;对于经典和量子硬件,新颖的算法都是详细介绍的,在这些算法中,这两者都被证明比以前已知的训练算法更好地缩放尺度。 第二种方法是量子辅助神经网络,其中量子计算机用于对经典神经网络的推理和培训进行内部产品估计。 然后,我们使用最新的量子硬件进行了广泛的实验,该实验应用于医学图像分类任务,在其中,我们将不同的量子方法与经典方法进行比较,既可以在真实的量子硬件和模拟器上进行比较。我们的结果表明,量子和经典的神经网络会产生相似的准确性水平,并支持鉴于更好的量子硬件的出现,量子方法可以在解决视觉任务中有用。

Quantum machine learning techniques have been proposed as a way to potentially enhance performance in machine learning applications. In this paper, we introduce two new quantum methods for neural networks. The first one is a quantum orthogonal neural network, which is based on a quantum pyramidal circuit as the building block for implementing orthogonal matrix multiplication. We provide an efficient way for training such orthogonal neural networks; novel algorithms are detailed for both classical and quantum hardware, where both are proven to scale asymptotically better than previously known training algorithms. The second method is quantum-assisted neural networks, where a quantum computer is used to perform inner product estimation for inference and training of classical neural networks. We then present extensive experiments applied to medical image classification tasks using current state of the art quantum hardware, where we compare different quantum methods with classical ones, on both real quantum hardware and simulators. Our results show that quantum and classical neural networks generates similar level of accuracy, supporting the promise that quantum methods can be useful in solving visual tasks, given the advent of better quantum hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源