论文标题

部分可观测时空混沌系统的无模型预测

Generative structured normalizing flow Gaussian processes applied to spectroscopic data

论文作者

Klein, Natalie, Panda, Nishant, Gasda, Patrick, Oyen, Diane

论文摘要

在这项工作中,我们提出了一种新的生成模型,用于使用结构化的条件归一化流量和高斯过程回归,将输入映射到结构化的高维输出。该模型的激励是由于在推断新数据时需要表征输入/输出关系中的不确定性。特别是,在物理科学中,有限的培训数据可能无法充分表征未来观察到的数据。至关重要的是,模型充分表明不确定性,尤其是当可能被要求推断时。在我们提出的模型中,结构化的条件归一化流提供了通过高斯过程与输入相关的简约潜在表示,从而提供了精确的似然计算和不确定性,而不确定性自然会远离训练数据输入。我们证明了来自火星漫游者好奇心Chemcam仪器的激光诱导的分解光谱数据的方法。 ChemCAM设计用于通过测量由激光脉冲诱导的血浆原子排放的光谱特性来恢复岩石和土壤样品的化学成分。我们表明,我们的模型可以在给定的化学成分上产生逼真的光谱,并且我们可以使用该模型对新观测光谱进行化学成分进行不确定性定量。根据我们的结果,我们预计我们提出的建模方法可能在具有高维,复杂结构的其他科学领域有用,在具有量化预测性不确定性很重要的情况下。

In this work, we propose a novel generative model for mapping inputs to structured, high-dimensional outputs using structured conditional normalizing flows and Gaussian process regression. The model is motivated by the need to characterize uncertainty in the input/output relationship when making inferences on new data. In particular, in the physical sciences, limited training data may not adequately characterize future observed data; it is critical that models adequately indicate uncertainty, particularly when they may be asked to extrapolate. In our proposed model, structured conditional normalizing flows provide parsimonious latent representations that relate to the inputs through a Gaussian process, providing exact likelihood calculations and uncertainty that naturally increases away from the training data inputs. We demonstrate the methodology on laser-induced breakdown spectroscopy data from the ChemCam instrument onboard the Mars rover Curiosity. ChemCam was designed to recover the chemical composition of rock and soil samples by measuring the spectral properties of plasma atomic emissions induced by a laser pulse. We show that our model can generate realistic spectra conditional on a given chemical composition and that we can use the model to perform uncertainty quantification of chemical compositions for new observed spectra. Based on our results, we anticipate that our proposed modeling approach may be useful in other scientific domains with high-dimensional, complex structure where it is important to quantify predictive uncertainty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源