论文标题

来自多视图梯度照明的可重新神经资产

Relightable Neural Human Assets from Multi-view Gradient Illuminations

论文作者

Zhou, Taotao, He, Kai, Wu, Di, Xu, Teng, Zhang, Qixuan, Shao, Kuixiang, Chen, Wenzheng, Xu, Lan, Yu, Jingyi

论文摘要

人类的建模和重新处理是计算机视觉和图形中的两个基本问题,高质量的数据集在很大程度上可以促进相关研究。但是,大多数现有的人类数据集仅提供在相同照明下捕获的多视图人类图像。尽管对于建模任务很有价值,但它们并不容易用于重新确定问题。为了促进这两个领域的研究,在本文中,我们提出了Ultrastage,这是一个新的3D人类数据集,其中包含在多视图和多弹性设置下捕获的2,000多个高质量的人类资产。具体而言,对于每个示例,我们提供32个周围的视图,并用一个白光和两个梯度照明。除了常规的多视图图像外,梯度照明有助于恢复详细的表面正常和空间变化的材料图,从而实现了各种重新确定应用。受神经表示的最新进展的启发,我们将每个例子进一步解释为神经人类资产,该资产允许在任意照明条件下进行新颖的视图综合。我们表明我们的神经资产可以达到极高的捕获性能,并且能够代表精细的细节,例如面部皱纹和布褶皱。我们还验证了单个图像重新任务的超强,通过来自神经资产的虚拟重新确定数据训练神经网络,并证明了对先前艺术的现实渲染改进。社区将公开使用超级运动,以刺激各种人类建模和渲染任务中的重大发展。该数据集可从https://miaoing.github.io/rnha获得。

Human modeling and relighting are two fundamental problems in computer vision and graphics, where high-quality datasets can largely facilitate related research. However, most existing human datasets only provide multi-view human images captured under the same illumination. Although valuable for modeling tasks, they are not readily used in relighting problems. To promote research in both fields, in this paper, we present UltraStage, a new 3D human dataset that contains more than 2,000 high-quality human assets captured under both multi-view and multi-illumination settings. Specifically, for each example, we provide 32 surrounding views illuminated with one white light and two gradient illuminations. In addition to regular multi-view images, gradient illuminations help recover detailed surface normal and spatially-varying material maps, enabling various relighting applications. Inspired by recent advances in neural representation, we further interpret each example into a neural human asset which allows novel view synthesis under arbitrary lighting conditions. We show our neural human assets can achieve extremely high capture performance and are capable of representing fine details such as facial wrinkles and cloth folds. We also validate UltraStage in single image relighting tasks, training neural networks with virtual relighted data from neural assets and demonstrating realistic rendering improvements over prior arts. UltraStage will be publicly available to the community to stimulate significant future developments in various human modeling and rendering tasks. The dataset is available at https://miaoing.github.io/RNHA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源