论文标题

抛物线纤维 - 椭圆形凯勒 - 塞格系统的有限元近似的错误估计和爆炸分析

Error estimates and blow-up analysis of a finite-element approximation for the parabolic-elliptic Keller-Segel system

论文作者

Chen, Wenbin, Liu, Qianqian, Shen, Jie

论文摘要

Keller-Segel方程广泛用于描述生物学中的趋化性。最近,在[46]中提出了一种新的完全离散的方案,为拟议方案证明了质量保护,积极性和能量衰减,这是原始系统的重要特性。在本文中,我们确定了该方案的错误估计。然后,根据误差估计,我们在某些条件下的质量和初始数据瞬间得出了非放射数值解决方案的有限时间爆炸。

The Keller-Segel equations are widely used for describing chemotaxis in biology. Recently, a new fully discrete scheme for this model was proposed in [46], mass conservation, positivity and energy decay were proved for the proposed scheme, which are important properties of the original system. In this paper, we establish the error estimates of this scheme. Then, based on the error estimates, we derive the finite-time blowup of nonradial numerical solutions under some conditions on the mass and the moment of the initial data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源