论文标题

BPS谎言代数为完全负面的2-卡拉比YAU类别和非亚伯杂货理论的堆栈理论

BPS Lie algebras for totally negative 2-Calabi-Yau categories and nonabelian Hodge theory for stacks

论文作者

Davison, Ben, Hennecart, Lucien, Mejia, Sebastian Schlegel

论文摘要

我们为合适的几何Abelian类别定义并研究了隔离理论的同源厅代数,最多是两个同源维度的$ \ Mathcal {a} $,而在$ \ nathcal {a} $是2-calabi-yau and y Mathcal {a}的条件下,隔离的理论bps代数为2 calabi-yau且具有良好的模仿空间。我们表明,完全负颤抖的前代数代数$π_q$的bps代数是由locus locus locus of the locus compareperure of loculi simple $π_q$ - 模型在粗型物模型空间中生成的自由代数。 我们定义并研究了bps lie代数为任意2-喀拉比yau类别$ \ mathcal {a} $,其中欧拉形式在所有对非零对象上的欧拉形式为负面,将其恢复为bps代数为其通用代数的BPS代数,用于这种“完全负面” 2cy 2cy类别。我们表明,对于完全负2CE类别,BPS代数是由上述某些粗模量空间的交叉络合物自由生成的,并且在这样的$ \ Mathcal {a} $中,对象堆栈的Borel-Moore Moore同源性满足了BPS liegebra的BPS pbw Theorem。通过这种方式,我们证明了这些类别的共同体完整性定理。 我们利用结果证明,对于$ c $,投影曲线平滑,对于$ r $和$ d $,不一定是coprime,在Borel-Moore的同种异体之间存在非阿比亚杂物同构,等级$ r $ r $ r $和$ d $ d $ d $ d $ higgs bunctles buncy bundles bunged bunged bunders bundles bughtless bugned the the the the the the the $ c $ c $ c $ c $ c $ c $ c $ c $ c的代表。此外,我们还证明了Bozec-Schiffmann的阳性猜想是完全负面的颤动。我们证明,它们在$ q $的可构造厅代数中计数cuspidal函数的多项式具有正系数,从而增强了此类Quivers的KAC多项式的阳性定理。

We define and study a sheaf-theoretic cohomological Hall algebra for suitably geometric Abelian categories $\mathcal{A}$ of homological dimension at most two, and a sheaf-theoretic BPS algebra under the conditions that $\mathcal{A}$ is 2-Calabi-Yau and has a good moduli space. We show that the BPS algebra for the preprojective algebra $Π_Q$ of a totally negative quiver is the free algebra generated by the intersection cohomology of the closure of the locus parameterising simple $Π_Q$-modules in the coarse moduli space. We define and study the BPS Lie algebra of arbitrary 2-Calabi-Yau categories $\mathcal{A}$ for which the Euler form is negative on all pairs of non-zero objects, which recovers the BPS algebra as its universal enveloping algebra for such "totally negative" 2CY categories. We show that for totally negative 2CY categories the BPS algebra is freely generated by intersection complexes of certain coarse moduli spaces as above, and the Borel-Moore homology of the stack of objects in such $\mathcal{A}$ satisfies a Yangian-type PBW theorem for the BPS Lie algebra. In this way we prove the cohomological integrality theorem for these categories. We use our results to prove that for $C$ a smooth projective curve, and for $r$ and $d$ not necessarily coprime, there is a nonabelian Hodge isomorphism between the Borel-Moore homologies of the stack of rank $r$ and degree $d$ Higgs bundles, and the appropriate stack of twisted representations of the fundamental group of $C$. In addition we prove the Bozec-Schiffmann positivity conjecture for totally negative quivers; we prove that their polynomials counting cuspidal functions in the constructible Hall algebra for $Q$ have positive coefficients, strengthening the positivity theorem for the Kac polynomials of such quivers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源