论文标题
图次要关系满足双替代猜想
The graph minor relation satisfies the twin alternative conjecture
论文作者
论文摘要
在2006年,Bonato和Tardif提出了树的替代猜想(TAC):在嵌入性关系下树的等效类别是琐碎的或无限的同构。 2022年,Laflamme等。提供了Tetano在其2008年博士学位论文中开发的TAC的典型示例的严格阐述。同样在2022年,本作者为TAC提供了拓扑次要关系的积极答案。除了嵌入性和拓扑辅修功能外,图形的关系还完成了研究最广泛的图形关系的三合会。在本文中,我们为图形小调的TAC提供了积极的答案。
In 2006 Bonato and Tardif posed the Tree Alternative Conjecture (TAC): the equivalence class of a tree under the embeddability relation is, up to isomorphism, either trivial or infinite. In 2022 LaFlamme, et al. provided a rigorous exposition of a conter-example to TAC developed by Tetano in his 2008 PhD thesis. Also in 2022, the present author provided a positive answer to TAC for the topological minor relation. Along with embeddability and the topological minor, the graph minor relation completes the triad of the most widely studied graph relations. In this paper we provide a positive answer to TAC for the the graph minor.