论文标题
通过非阴影的稳定性
Stability through non-shadows
论文作者
论文摘要
我们研究家庭$ \ MATHCAL {F} \ subseteq 2^{[n]} $具有限制的交叉点,并证明了对大型$ n $的更强形式的猜想。我们还获得了克莱特曼(Kleitman)等次数不平等的稳定性结果,并且具有有限的设定差异的家庭。我们的证明为经典线性代数方法带来了新的转折,利用了$ \ Mathcal {f} $的非阴影,这可能具有独立的兴趣。
We study families $\mathcal{F}\subseteq 2^{[n]}$ with restricted intersections and prove a conjecture of Snevily in a stronger form for large $n$. We also obtain stability results for Kleitman's isodiametric inequality and families with bounded set-wise differences. Our proofs introduce a new twist to the classical linear algebra method, harnessing the non-shadows of $\mathcal{F}$, which may be of independent interest.