论文标题

在受限量子磁铁中的动态激发中的汉密尔顿推断

Hamiltonian inference from dynamical excitations in confined quantum magnets

论文作者

Karjalainen, Netta, Lippo, Zina, Chen, Guangze, Koch, Rouven, Fumega, Adolfo O., Lado, Jose L.

论文摘要

量子排序的模型提供了一个多功能平台,以探索多体系统中量子激发的出现。通过扫描隧道显微镜和具有电动旋转共振的激发的局部刺激成像,在原子量表上进行了自旋模型的工程,这是一种有力的策略,可以在有限的量子旋转系统中图像旋转激发。在这里,专注于Ti在MGO中实现的$ S = 1/2 $ lattices时,我们表明动态旋转激发提供了一种强大的策略来推断基础汉密尔顿的性质。我们表明,通用远程海森贝格模型的动态多体旋转激发的有限大小干扰允许推断潜在的自旋耦合。我们表明,Ti岛和梯子中局部自旋激发的空间分布直接与热力学极限处的基础状态有关。使用有监督的学习算法,我们证明可以通过提供空间和频率依赖性的局部激发来提取哈密顿量的不同参数,这些激发可以通过扫描隧道显微镜通过电动驱动的自旋共振直接测量。我们的结果提出了局部动力激励在受限的量子自旋模型中,作为基本基础状态的多功能见证人,为在复杂的真实自旋模型中为哈密顿推断提供了实验强大的策略。

Quantum-disordered models provide a versatile platform to explore the emergence of quantum excitations in many-body systems. The engineering of spin models at the atomic scale with scanning tunneling microscopy and the local imaging of excitations with electrically driven spin resonance has risen as a powerful strategy to image spin excitations in finite quantum spin systems. Here, focusing on $S=1/2$ lattices as realized by Ti in MgO, we show that dynamical spin excitations provide a robust strategy to infer the nature of the underlying Hamiltonian. We show that finite-size interference of the dynamical many-body spin excitations of a generalized long-range Heisenberg model allows the underlying spin couplings to be inferred. We show that the spatial distribution of local spin excitations in Ti islands and ladders directly correlates with the underlying ground state in the thermodynamic limit. Using a supervised learning algorithm, we demonstrate that the different parameters of the Hamiltonian can be extracted by providing the spatially and frequency-dependent local excitations that can be directly measured by electrically driven spin resonance with scanning tunneling microscopy. Our results put forward local dynamical excitations in confined quantum spin models as versatile witnesses of the underlying ground state, providing an experimentally robust strategy for Hamiltonian inference in complex real spin models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源