论文标题
从嵌合体/孤立状态过渡到行进波
Transition from chimera/solitary states to traveling waves
论文作者
论文摘要
我们从数值上研究非局部耦合非线性振荡器的环网络中的时空动力学,每个动力学都由经典Van der Pol振荡器的二维离散时间模型表示。结果表明,离散的振荡器表现出更丰富的行为,结合了原始系统和自身动态的特殊性。此外,当离散参数和耦合强度变化时,在离散范德尔振荡器网络中观察到大量时空结构。首次揭示了多径二聚体状态/行动波和孤立状态的政权,并进行了详细研究。可以确定的是,大多数观察到的嵌合体/孤立状态(包括新发现的状态)都是朝向纯粹的行驶波模式的瞬时。根据系统参数,观察时间,初始条件和外部噪声的影响,分析了过渡过程和千期结构的寿命(瞬态)的特殊性。
We study numerically the spatiotemporal dynamics in a ring network of nonlocally coupled nonlinear oscillators, each represented by a two-dimensional discrete-time model of the classical van der Pol oscillator. It is shown that the discretized oscillator exhibits a richer behavior, combining the peculiarities of both the original system and its own dynamics. Moreover, a large variety of spatiotemporal structures is observed in the network of discrete van der Pol oscillators when the discretization parameter and the coupling strength are varied. Regimes such as the coexistence of multichimera state/traveling wave and solitary state are revealed for the first time and are studied in detail. It is established that the majority of the observed chimera/solitary states, including the newly found ones, are transient towards the purely traveling wave mode. The peculiarities of the transition process and the lifetime (transient duration) of the chimera structures and the solitary state are analyzed depending on the system parameters, the observation time, initial conditions, and the influence of external noise.