论文标题

$ f(q)$重力中减速参数的参数

Paramerization of deceleration parameter in $f(Q)$ gravity

论文作者

Gadbail, Gaurav N., Mandal, Sanjay, Sahoo, P. K.

论文摘要

在本文中,我们调查了修改的对称触发性重力或$ f(q)$重力,其中$ q $是非金属,以考虑$ f(q)=αq^n $的功能形式,其中$α$和$ n $是常数。在这里,我们将减速参数的参数化形式视为$ q = q_0+\ frac {q_1 \,z} {(1+z)^2} $,它为从减速到加速阶段的符号翻转提供了所需的属性。我们通过检查上述参数形式的$ Q $的参数来获取Hubble参数的解决方案,然后将解决方案强加于Friedmann方程。通过使用观察性哈勃数据(OHD)的贝叶斯分析,我们估计了对关联的免费参数$(H_0,Q_0,Q_1)$的约束,以确定此模型是否可能挑战$λ$ CDM的限制。此外,减速参数的约束当前值$ q_0 = -0.832^{+0.091} _ { - 0.091} $显示当前的宇宙正在加速。我们还研究了能量密度,压力和EOS参数的进化轨迹,以结论宇宙的加速行为。最后,我们尝试证明减速参数的考虑参数形式与$ f(q)$ reverity兼容。

In this article, we investigate the modified symmetric teleparallel gravity or $f(Q)$ gravity, where $Q$ is the non-metricity, to study the evolutionary history of the universe by considering the functional form of $f(Q)=αQ^n$, where $α$ and $n$ are constants. Here, we consider the parametrization form of the deceleration parameter as $q=q_0+\frac{q_1\,z}{(1+z)^2}$ which provides the desired property for sign flip from a decelerating to an accelerating phase. We get the solution of the Hubble parameter by examining the mentioned parametric form of $q$, and then we impose the solution in Friedmann equations. Employing the Bayesian analysis for the Observational Hubble data (OHD), we estimated the constraints on the associated free parameters $(H_0,q_0,q_1)$ to determine if this model may challenge the $Λ$CDM limitations. Furthermore, the constrained current value of the deceleration parameter $q_0=-0.832^{+0.091}_{-0.091}$ shows that the present universe is accelerating. We also investigate the evolutionary trajectory of energy density, pressure, and EoS parameters to conclude the accelerating behavior of the universe. Finally, we try to demonstrate that the considered parametric form of the deceleration parameter is compatible with $f(Q)$ gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源