论文标题
由于皮肤效应而缺乏对数和代数缩放纠缠阶段
Absence of logarithmic and algebraic scaling entanglement phases due to skin effect
论文作者
论文摘要
在射影测量和随机统一进化之间存在竞争的情况下,测量引起的相变引起了越来越多的纠缠结构现象学现象引起的关注。但是,在具有自由费米子的开放量子系统中,具有条件反馈的广义测量值可以引起皮肤效应,并使系统短距离纠缠而没有任何纠缠过渡,这意味着该系统始终保持在``区域法律''纠缠阶段。在这项工作中,我们证明了幂律的远程跳跃并没有改变因测量诱导的开放边界条件系统的测量引起的皮肤效应带来的纠缠转变。此外,对于有限大小的系统,当powerlaw指数$ p $长距离跳跃相对较小时,我们发现了一个代数缩放缩放$ s(l,l/4)\ sim l^{3/2-p} $。对于具有周期性边界条件的系统,我们发现测量引起的皮肤效应消失并观察``代数定律'',``代数定律'',``对数定律''和``Again''阶段之间的纠缠相变。
Measurement-induced phase transition in the presence of competition between projective measurement and random unitary evolution has attracted increasing attention due to the rich phenomenology of entanglement structures. However, in open quantum systems with free fermions, a generalized measurement with conditional feedback can induce skin effect and render the system short-range entangled without any entanglement transition, meaning the system always remains in the ``area law'' entanglement phase. In this work, we demonstrate that the power-law long-range hopping does not alter the absence of entanglement transition brought on by the measurement-induced skin effect for systems with open boundary conditions. In addition, for the finite-size systems, we discover an algebraic scaling $S(L, L/4)\sim L^{3/2-p}$ when the power-law exponent $p$ of long-range hopping is relatively small. For systems with periodic boundary conditions, we find that the measurement-induced skin effect disappears and observe entanglement phase transitions among ``algebraic law'', ``logarithmic law'', and ``area law'' phases.