论文标题

从超高强度激光脉冲与近临界密度气体目标的相互作用的离子加速度参数研究

Parametric study on ion acceleration from the interaction of ultra-high intensity laser pulses with near-critical density gas targets

论文作者

Ospina-Bohórquez, V., Debayle, A., Santos, J. J., Volpe, L., Gremillet, L.

论文摘要

我们提出了一项基于进行的1-D粒子(PIC)模拟的参数研究,目的是了解强烈激光与近临界非均匀密度密度气体目标的相互作用。具体而言,我们的目的是找到一组最佳的实验参数,内容涉及$λ_l$ = 0.8 $ $ $ m,$ i_l = 10^{20} $ w/cm $^2 $($ a_0 = 8.8 $),$τ_l= 30 $ fs laser vs lo-Cricial doclitaine doffornal doffornal costal vost vost vost vost vost vost vost vost vost vost vost vost vost vost vost y no no no no no nor nor nitorgogen azz agent a nitorgogen kizzer。使用了在CEA上开发的PIC代码卡德,并且研究了最大电子密度和直接激光对离子加速度的贡献。对于峰值电子密度$ n_e $,在0.35 $ n_c $和0.7 $ n_c $之间实现了冲击形成。在此密度间隔中,激光脉冲的一定百分比的存活率直到气体密度峰值,同时被强烈吸收($> $ 90 $ \%\%$),并在高坡道中创建热电子种群,以作为冲击形成的必要条件。此外,激光吸收必须引起目标电子的超级浮动量加热,以便在血浆内部发射静电冲击。直接激光对离子加速度的效应由强的初始密度扰动组成,该密度扰动会增强电荷分离,而电子压力梯度则被确定为减震形成的基础。对受控气体概况的产生以及具有统计含义的测量的可能性被强调为进行彻底的实验研究。

We present a parametric study based on 1-D particle-in-cell (PIC) simulations conducted with the objective of understanding the interaction of intense lasers with near-critical non-uniform density gas targets. Specifically, we aim to find an optimal set of experimental parameters regarding the interaction of a $λ_L$ = 0.8 $μ$m, $I_L =10^{20}$ W/cm$^2$ ($a_0 = 8.8$), $τ_L = 30$ fs laser pulse with a near-critical non-uniform pure nitrogen gas profile produced by a non commercial gas nozzle. The PIC code Calder developed at CEA was used, and both the maximum electron density and the direct laser contribution to ion acceleration were studied. Shock formation was achieved for a peak electron density $n_e$ ranging between 0.35 $n_c$ and 0.7 $n_c$. In this density interval, the survival of a percentage of the laser pulse until the gas density peak, while being strongly absorbed ($>$90$\%$) and creating a hot electron population in the gas up-ramp, is singled out as a necessary condition for shock formation. Moreover, the laser absorption must give rise to a super ponderomotive heating of the target electrons in order to launch an electrostatic shock inside the plasma. The direct laser effect on ion acceleration consists in a strong initial density perturbation that enhances charge separation while the electron pressure gradients are identified as fundamental for shock formation. The production of a controlled and repetitive gas profile as well as the possibility of performing measurements with statistical meaning are highlighted as fundamental for conducting a thorough experimental study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源