论文标题

基于密度依赖的模量模型的弹性多孔固体的优先刚度和裂纹尖端场

Preferential stiffness and the crack-tip fields of an elastic porous solid based on the density-dependent moduli model

论文作者

Yoon, Hyun C., Mallikarjunaiah, S. M., Bhatta, Dambaru

论文摘要

在本文中,我们研究了弹性多孔固体的优先刚度和裂纹尖端,其材料特性取决于密度。这样的描述对于描述许多多孔物体(例如陶瓷,混凝土和人类骨骼)可能导致的失败是必要的。为此,我们在较小的变形的假设下重新审视了一类新的隐式构型关系。尽管本构的关系\ textit {出现在Cauchy应力和线性化菌株中,但从线性动量平衡中赋予的管理方程会导致准线性偏差方程(PDE)系统。对于线性化并获得椭圆PDE的序列,我们提出了解决方案算法,包括A \ textIt {Newton的方法}以及双线性连续连续的Galerkin型有限元素以进行离散化。我们的算法对于制成溶液表现出最佳的收敛速率。在数值实验中,我们将边界值问题(BVP)设置为边缘裂纹{在不同的加载模式下(即纯Mode-I,II,II和混合模式)。从数值结果中,我们发现密度依赖的模量模型描述了在经典线性化弹性框架内未捕获的各种现象。特别是,数值解决方案清楚地表明,非线性\ textIt {建模}参数取决于其符号和幅度可以控制优先机械刚度以及体积应变的变化;较大的参数在正值中,响应是使多孔固体的强度在拉伸载荷方面变得较弱,而对平面剪切(或压缩)载荷的硬化,反之亦然,反之亦然。

In this paper, we study the preferential stiffness and the crack-tip fields for an elastic porous solid of which material properties are dependent upon the density. Such a description is necessary to describe the failure that can be caused by damaged pores in many porous bodies such as ceramics, concrete and human bones. To that end, we revisit a new class of implicit constitutive relations under the assumption of small deformation. Although the constitutive relationship \textit{appears linear} in both the Cauchy stress and linearized strain, the governing equation bestowed from the balance of linear momentum results in a quasi-linear partial differential equation (PDE) system. For the linearization and obtaining a sequence of elliptic PDEs, we propose the solution algorithm comprise a \textit{Newton's method} coupled with a bilinear continuous Galerkin-type finite elements for the discretization. Our algorithm exhibits an optimal rate of convergence for a manufactured solution. In the numerical experiments, we set the boundary value problems (BVPs) with edge crack {under different modes of loading (i.e., the pure mode-I, II, and the mixed-mode). From the numerical results, we find that the density-dependent moduli model describes diverse phenomena that are not captured within the framework of classical linearized elasticity. In particular,numerical solutions clearly indicate that the nonlinear \textit{modeling} parameter depending on its sign and magnitude can control preferential mechanical stiffness along with the change of volumetric strain; larger the parameter is in the positive value}, the responses are such that the strength of porous solid gets weaker against the tensile loading while stiffer against the in-plane shear (or compressive) loading, which is vice versa for the negative value of it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源