论文标题

三维波图的最佳爆炸稳定性

Optimal blowup stability for three-dimensional wave maps

论文作者

Donninger, Roland, Wallauch, David

论文摘要

我们将旋转波图从$(1+3)$ - 尺寸Minkowski空间到三个球体。我们在关键的Sobolev空间中很小的扰动下建立了明确已知的自相似波图的渐近稳定性。这是通过证明具有相似性坐标潜力的径向波方程的Strichartz估计来实现的。与较早的工作相比,主要的新颖性在于关键的Sobolev空间是分数秩序的事实。

We study corotational wave maps from $(1+3)$-dimensional Minkowski space into the three-sphere. We establish the asymptotic stability of an explicitly known self-similar wave map under perturbations that are small in the critical Sobolev space. This is accomplished by proving Strichartz estimates for a radial wave equation with a potential in similarity coordinates. Compared to earlier work, the main novelty lies with the fact that the critical Sobolev space is of fractional order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源