论文标题
三维波图的最佳爆炸稳定性
Optimal blowup stability for three-dimensional wave maps
论文作者
论文摘要
我们将旋转波图从$(1+3)$ - 尺寸Minkowski空间到三个球体。我们在关键的Sobolev空间中很小的扰动下建立了明确已知的自相似波图的渐近稳定性。这是通过证明具有相似性坐标潜力的径向波方程的Strichartz估计来实现的。与较早的工作相比,主要的新颖性在于关键的Sobolev空间是分数秩序的事实。
We study corotational wave maps from $(1+3)$-dimensional Minkowski space into the three-sphere. We establish the asymptotic stability of an explicitly known self-similar wave map under perturbations that are small in the critical Sobolev space. This is accomplished by proving Strichartz estimates for a radial wave equation with a potential in similarity coordinates. Compared to earlier work, the main novelty lies with the fact that the critical Sobolev space is of fractional order.