论文标题
1.5- $ r_ \ oplus $ planet挥发性丰富的构图的证据
Evidence for the volatile-rich composition of a 1.5-$R_\oplus$ planet
论文作者
论文摘要
小于$ 1.7〜r_ \ oplus $的行星种群被广泛解释为由岩石世界组成,通常称为超级地球。这张图片在很大程度上通过径向速度(RV)质量测量值来证实,但在较低的沉积物下缺乏约束。在这里,我们使用13个Hubble和Spitzer Transit观测值$ 1.51 \ PM0.04〜R_ \ r_ \ oplus $ Planet kepler-138 d($ t _ {$ t _ {\ MATHRM {eq eq,a_b = 0.350 keck/nek nek nek y n nek of nek nek nek of nek nek nek nek nek of New nek nek of nek y Must y nek n nek nek n nek n nek n n nek nek nek nek nek nek n n new nek nek,它的主人明星。我们发现,开普勒138 d的挥发性富裕的“水世界”性质的证据,其质量很大一部分包含在厚的挥发性层中。该发现由公交定时变化,RV观测值($ m_d = 2.1 _ { - 0.7}^{+0.6} 〜M_ \ oplus $)以及平坦的光学/IR传输谱。定量地,我们推断出$ 11 _ { - 4}^{+3} $ \%挥发物的$ 11 _ { - 4}^{ - 4}^{+3} $ \%的挥发物,或〜51%按体积挥发,在核心上具有2000 km深水地幔和大气,并具有地球样的硅酸盐/铁比。与观测值一致的任何假设氢层($ <0.003〜m_ \ oplus $)都会迅速在〜10的MYR时间尺度上丢失。因此,开普勒-138 D的整体组成类似于冰冷月亮的组成,而不是太阳系中的陆地行星。我们得出的结论是,并非所有超级地球大小的行星都是岩石的世界,但是富裕的水世界存在于重叠的尺寸制度中,尤其是在较低的日期下。最后,我们的光动力学分析还表明,Kepler-138 c($ r_c = 1.51 \ pm 0.04〜r_ \ oplus $,$ m_c = 2.3 _ { - 0.5}^{+0.6} 〜0.6} 〜m_ \ m_ \ oplus $)是一个较温暖e,可能是在宜居区内边缘的可能的非传输行星。
The population of planets smaller than approximately $1.7~R_\oplus$ is widely interpreted as consisting of rocky worlds, generally referred to as super-Earths. This picture is largely corroborated by radial-velocity (RV) mass measurements for close-in super-Earths but lacks constraints at lower insolations. Here we present the results of a detailed study of the Kepler-138 system using 13 Hubble and Spitzer transit observations of the warm-temperate $1.51\pm0.04~R_\oplus$ planet Kepler-138 d ($T_{\mathrm{eq, A_B=0.3}}$~350 K) combined with new Keck/HIRES RV measurements of its host star. We find evidence for a volatile-rich "water world" nature of Kepler-138 d, with a large fraction of its mass contained in a thick volatile layer. This finding is independently supported by transit timing variations, RV observations ($M_d=2.1_{-0.7}^{+0.6}~M_\oplus$), as well as the flat optical/IR transmission spectrum. Quantitatively, we infer a composition of $11_{-4}^{+3}$\% volatiles by mass or ~51% by volume, with a 2000 km deep water mantle and atmosphere on top of a core with an Earth-like silicates/iron ratio. Any hypothetical hydrogen layer consistent with the observations ($<0.003~M_\oplus$) would have swiftly been lost on a ~10 Myr timescale. The bulk composition of Kepler-138 d therefore resembles those of the icy moons rather than the terrestrial planets in the solar system. We conclude that not all super-Earth-sized planets are rocky worlds, but that volatile-rich water worlds exist in an overlapping size regime, especially at lower insolations. Finally, our photodynamical analysis also reveals that Kepler-138 c ($R_c=1.51 \pm 0.04~R_\oplus$, $M_c=2.3_{-0.5}^{+0.6}~M_\oplus$) is a slightly warmer twin of Kepler-138 d, i.e., another water world in the same system, and we infer the presence of Kepler-138 e, a likely non-transiting planet at the inner edge of the habitable zone.