论文标题
网格D-翻新:一个基于数据的计算框架,以说明复杂的材料响应
Mesh d-refinement: a data-based computational framework to account for complex material response
论文作者
论文摘要
无模型数据驱动的计算力学(DDCM)是用于固体力学模拟的新范式。通过引入抽象相空间来规避与材料本构法的定义相关的建模步骤,在该空间中,遵循预定的规则,将物理上适用的状态与观察到的材料响应数据相匹配(来自实验或较低规模的模拟)。就计算资源而言,执行这些匹配的搜索过程是算法中最繁重的步骤。 DDCM的主要优点之一是,它避免了基于回归的偏见易于构成模型。但是,许多材料确实在小型晶体制度中表现出简单的线性响应,同时在一定的变形阈值后也提出了复杂的行为。在这一事实的推动下,我们提出了一种新颖的改进技术,该技术将常规元素(配备了线性弹性构法定律)变成数据驱动的元素,如果预计它们会超过已知的阈值来触发物质非线性响应的阈值。我们将此技术称为``数据完善'',简称``d-refinement''。从最初常规的FEM网格开始,所提出的算法检测到需要进行改进并迭代的位置,直到所有假定显示非线性的元素都成为数据驱动的元素。讨论了插入标准。该方案非常适合在相对较小的域中具有非线性响应的模拟,而其余的则保持线性弹性。该方法通过传统的增量求解器(即牛顿 - 拉夫森方法)进行了验证,我们表明,D-Refinement框架可以以速度胜过速度,而不会损失准确性。我们提供了一个显示新方法优势的应用程序:架构的超材料中的桥接量表。
Model-free data-driven computational mechanics (DDCM) is a new paradigm for simulations in solid mechanics. The modeling step associated to the definition of a material constitutive law is circumvented through the introduction of an abstract phase space in which, following a pre-defined rule, physically-admissible states are matched to observed material response data (coming from either experiments or lower-scale simulations). In terms of computational resources, the search procedure that performs these matches is the most onerous step in the algorithm. One of the main advantages of DDCM is the fact that it avoids regression-based, bias-prone constitutive modeling. However, many materials do display a simple linear response in the small-strain regime while also presenting complex behavior after a certain deformation threshold. Motivated by this fact, we present a novel refinement technique that turns regular elements (equipped with a linear-elastic constitutive law) into data-driven ones if they are expected to surpass the threshold known to trigger material non-linear response. We term this technique ``data refinement'', ``d-refinement'' for short. Starting from an initially regular FEM mesh, the proposed algorithm detects where the refinement is needed and iterates until all elements presumed to display non-linearity become data-driven ones. Insertion criteria are discussed. The scheme is well-suited for simulations that feature non-linear response in relatively small portions of the domain while the rest remains linear-elastic. The method is validated against a traditional incremental solver (i.e., Newton-Raphson method) and we show that the d-refinement framework can outperform it in terms of speed at no loss of accuracy. We provide an application that showcases the advantage of the new method: bridging scales in architected metamaterials.