论文标题

用wgan支持的增强对射电星系的形态学分类

Morphological Classification of Radio Galaxies with wGAN-supported Augmentation

论文作者

Rustige, Lennart, Kummer, Janis, Griese, Florian, Borras, Kerstin, Brüggen, Marcus, Connor, Patrick L. S., Gaede, Frank, Kasieczka, Gregor, Knopp, Tobias, Schleper, Peter

论文摘要

对天文来源进行形态学分类的机器学习技术通常会遭受标记的训练数据的稀缺性。在这里,我们专注于监督的深度学习模型,用于射电星系的形态学分类,这对于即将进行的大型无线电调查尤其是主题。我们证明了生成模型,特别是Wasserstein Gans(WGAN)的使用来生成不同类别的射电星系的数据。此外,我们研究了使用木材的图像增强培训数据对三种不同分类体系结构的影响。我们发现,这种技术使改善射电星系形态学分类的模型成为可能。一个简单的完全连接的神经网络(FCN)使得将生成的图像包括在训练集中,并有很大的提高其分类精度。此外,我们发现改善复杂的分类器更加困难。卷积神经网络(CNN)的分类性能可以稍微提高。但是,视觉变压器(VIT)并非如此。

Machine learning techniques that perform morphological classification of astronomical sources often suffer from a scarcity of labelled training data. Here, we focus on the case of supervised deep learning models for the morphological classification of radio galaxies, which is particularly topical for the forthcoming large radio surveys. We demonstrate the use of generative models, specifically Wasserstein GANs (wGANs), to generate data for different classes of radio galaxies. Further, we study the impact of augmenting the training data with images from our wGAN on three different classification architectures. We find that this technique makes it possible to improve models for the morphological classification of radio galaxies. A simple Fully Connected Neural Network (FCN) benefits most from including generated images into the training set, with a considerable improvement of its classification accuracy. In addition, we find it is more difficult to improve complex classifiers. The classification performance of a Convolutional Neural Network (CNN) can be improved slightly. However, this is not the case for a Vision Transformer (ViT).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源