论文标题
通过互补的视觉使用和触摸来计划视觉效果精确的掌握
Planning Visual-Tactile Precision Grasps via Complementary Use of Vision and Touch
论文作者
论文摘要
可靠地计划指尖抓取多指手的手是许多任务的关键挑战,包括工具使用,插入和灵巧的手中操纵。当机器人缺乏掌握对象的准确模型时,此任务变得更加困难。触觉传感提供了一种有希望的方法来说明对象形状的不确定性。但是,目前的机器人手往往缺乏完全的触觉覆盖范围。因此,出现了一个问题,即如何计划和执行多指手的手,以便与触觉传感器覆盖的区域进行接触。为了解决这个问题,我们提出了一种掌握计划的方法,即明确的理由指尖在何处应接触估计的物体表面,同时最大程度地提高了掌握成功的可能性。我们方法成功的关键是将视觉表面估计用于初始规划以编码联系人约束。然后,机器人使用触觉反馈控制器执行此计划,该计划使机器人能够适应对象表面的在线估计,以纠正初始计划中的错误。重要的是,机器人永远不会明确整合视觉和触觉传感之间的对象姿势或表面估计,而是以互补的方式使用了两种方式。视觉在接触之前指导机器人运动;当接触发生的情况与视觉预期不同时,触摸会更新计划。我们表明,我们的方法成功合成并使用来自单个相机视图的表面估计值来成功合成以前看不见的对象。此外,我们的方法的表现超过了最先进的多指定掌握计划者的状态,同时还击败了我们提出的几个基线。
Reliably planning fingertip grasps for multi-fingered hands lies as a key challenge for many tasks including tool use, insertion, and dexterous in-hand manipulation. This task becomes even more difficult when the robot lacks an accurate model of the object to be grasped. Tactile sensing offers a promising approach to account for uncertainties in object shape. However, current robotic hands tend to lack full tactile coverage. As such, a problem arises of how to plan and execute grasps for multi-fingered hands such that contact is made with the area covered by the tactile sensors. To address this issue, we propose an approach to grasp planning that explicitly reasons about where the fingertips should contact the estimated object surface while maximizing the probability of grasp success. Key to our method's success is the use of visual surface estimation for initial planning to encode the contact constraint. The robot then executes this plan using a tactile-feedback controller that enables the robot to adapt to online estimates of the object's surface to correct for errors in the initial plan. Importantly, the robot never explicitly integrates object pose or surface estimates between visual and tactile sensing, instead it uses the two modalities in complementary ways. Vision guides the robots motion prior to contact; touch updates the plan when contact occurs differently than predicted from vision. We show that our method successfully synthesises and executes precision grasps for previously unseen objects using surface estimates from a single camera view. Further, our approach outperforms a state of the art multi-fingered grasp planner, while also beating several baselines we propose.