论文标题
$ p $ - adic整数的多边形环
Polyadic rings of $p$-adic integers
论文作者
论文摘要
首先,在本说明中,我们回想起某些普通残留类别类的所有代表的集合变为$ \ weft(m,n \ right)$ rings。其次,我们引入了可能的$ p $ -adic类似物模型a $ p $ - adic整数。然后,我们找到了确定代表何时形成$ \ left(m,n \ right)$ ring的关系。在很短的时空尺度上,这样的环可能导致现代粒子模型的新对称性。
In this note we, first, recall that the sets of all representatives of some special ordinary residue classes become $\left( m,n\right) $-rings. Second, we introduce a possible $p$-adic analog of the residue class modulo a $p$-adic integer. Then, we find the relations which determine, when the representatives form a $\left( m,n\right) $-ring. At the very short spacetime scales such rings could lead to new symmetries of modern particle models.