论文标题
Brauer's Group ecorivariant神经网络
Brauer's Group Equivariant Neural Networks
论文作者
论文摘要
我们提供了所有可能的组模棱两可的神经网络的全面表征,这些神经网络是$ \ mathbb {r}^{n} $的某些张量功率,用于三个对称群体,这些对称群体中缺少机器学习文献中缺少:$ o(n)$,正交组的$ o(n)$; $ SO(N)$,特别的正交组;和$ sp(n)$,符号组。特别是,我们在标准的基础上找到了一组可学习的,线性的,等效层在此类张量的功能空间之间的矩阵,而当组为$ o(n)$或$ so(n)$或$ so(n)$,以及在$ \ mathbbbb {n $ sply sple的标准基础上,当组为$ o(n)$或$ so(n)$或$ so(n)$或$ so(n)$(n)$(n)$(n)$(n)$(n)$} $。
We provide a full characterisation of all of the possible group equivariant neural networks whose layers are some tensor power of $\mathbb{R}^{n}$ for three symmetry groups that are missing from the machine learning literature: $O(n)$, the orthogonal group; $SO(n)$, the special orthogonal group; and $Sp(n)$, the symplectic group. In particular, we find a spanning set of matrices for the learnable, linear, equivariant layer functions between such tensor power spaces in the standard basis of $\mathbb{R}^{n}$ when the group is $O(n)$ or $SO(n)$, and in the symplectic basis of $\mathbb{R}^{n}$ when the group is $Sp(n)$.