论文标题

使用基于仿真的测试学习非舒适性:网络交通形成案例研究

Learning Non-robustness using Simulation-based Testing: a Network Traffic-shaping Case Study

论文作者

Jodat, Baharin Aliashrafi, Nejati, Shiva, Sabetzadeh, Mehrdad, Saavedra, Patricio

论文摘要

系统的输入揭示了非稳定行为,当通过对输入进行少量更改,系统的输出从可接受(通过)变为不可接受的(失败),反之亦然。识别导致非舒适行为的输入对于许多类型的系统,例如网络物理和网络系统,其输入容易扰动。在本文中,我们提出了一种将基于模拟的测试与回归树模型相结合的方法,以生成输入的值范围,以响应系统可能表现出非舒适行为。我们将方法应用于网络交通形成系统(NTSS) - 网络领域的新案例研究。在此案例研究中,与网络解决方案提供商Rabbitrun Technologies合作开发和开发了,导致非舒适性的输入范围是识别和减轻网络服务质量问题的一种方式。我们证明,我们的方法可以准确地表征NTSS的非体测试输入,通过达到84%的精度和100%的召回率,明显优于标准基线。此外,我们表明,从我们的模拟测试台获得的结果与具有相同配置的硬件测试床之间没有统计学上的显着差异。最后,我们描述了从我们的工业合作中学到的经验教训,提供了有关模拟如何帮助发现未知和无证行为的见解,以及关于使用非舒适性作为系统重新配置的衡量标准的新观点。

An input to a system reveals a non-robust behaviour when, by making a small change in the input, the output of the system changes from acceptable (passing) to unacceptable (failing) or vice versa. Identifying inputs that lead to non-robust behaviours is important for many types of systems, e.g., cyber-physical and network systems, whose inputs are prone to perturbations. In this paper, we propose an approach that combines simulation-based testing with regression tree models to generate value ranges for inputs in response to which a system is likely to exhibit non-robust behaviours. We apply our approach to a network traffic-shaping system (NTSS) -- a novel case study from the network domain. In this case study, developed and conducted in collaboration with a network solutions provider, RabbitRun Technologies, input ranges that lead to non-robustness are of interest as a way to identify and mitigate network quality-of-service issues. We demonstrate that our approach accurately characterizes non-robust test inputs of NTSS by achieving a precision of 84% and a recall of 100%, significantly outperforming a standard baseline. In addition, we show that there is no statistically significant difference between the results obtained from our simulated testbed and a hardware testbed with identical configurations. Finally we describe lessons learned from our industrial collaboration, offering insights about how simulation helps discover unknown and undocumented behaviours as well as a new perspective on using non-robustness as a measure for system re-configuration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源