论文标题

信任解释者:教师对课程设计可解释的人工智能的验证

Trusting the Explainers: Teacher Validation of Explainable Artificial Intelligence for Course Design

论文作者

Swamy, Vinitra, Du, Sijia, Marras, Mirko, Käser, Tanja

论文摘要

在过去的几年中,学习分析的深度学习模型变得越来越流行。但是,在现实世界中,这些方法仍未被广泛采用,这可能是由于缺乏信任和透明度所致。在本文中,我们通过为黑盒神经网络实施可解释的AI方法来解决此问题。这项工作着重于在线和混合学习的背景以及学生成功预测模型的用例。我们使用成对的研究设计,使我们能够研究成对课程之间的受控差异。我们的分析涵盖了五个课程对,在一个教育相关的方面和两个流行的基于实例的可解释的AI方法(Lime和Shap)上有所不同。我们定量比较跨课程和方法之间的解释之间的距离。然后,我们通过对大学水平教育工作者的26个半结构化访谈来验证石灰和摇摆的解释,以了解他们认为哪些功能对学生的成功做出了最大的贡献,这些功能是他们最信任的解释,以及如何将这些见解转化为可行的课程设计决策。我们的结果表明,定量的解释者在重要的方面非常不同意,而从定性上讲,专家本身不同意哪些解释最值得信赖。所有代码,扩展结果和访谈协议均在https://github.com/epfl-ml4ed/trusting-ecplainers上提供。

Deep learning models for learning analytics have become increasingly popular over the last few years; however, these approaches are still not widely adopted in real-world settings, likely due to a lack of trust and transparency. In this paper, we tackle this issue by implementing explainable AI methods for black-box neural networks. This work focuses on the context of online and blended learning and the use case of student success prediction models. We use a pairwise study design, enabling us to investigate controlled differences between pairs of courses. Our analyses cover five course pairs that differ in one educationally relevant aspect and two popular instance-based explainable AI methods (LIME and SHAP). We quantitatively compare the distances between the explanations across courses and methods. We then validate the explanations of LIME and SHAP with 26 semi-structured interviews of university-level educators regarding which features they believe contribute most to student success, which explanations they trust most, and how they could transform these insights into actionable course design decisions. Our results show that quantitatively, explainers significantly disagree with each other about what is important, and qualitatively, experts themselves do not agree on which explanations are most trustworthy. All code, extended results, and the interview protocol are provided at https://github.com/epfl-ml4ed/trusting-explainers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源